An Efficient Algorithm for Extracting Railway Tracks Based on Spatial-Channel Graph Convolutional Network and Deep Neural Residual Network

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-29 DOI:10.3390/ijgi13090309
Yanbin Weng, Meng Xu, Xiahu Chen, Cheng Peng, Hui Xiang, Peixin Xie, Hua Yin
{"title":"An Efficient Algorithm for Extracting Railway Tracks Based on Spatial-Channel Graph Convolutional Network and Deep Neural Residual Network","authors":"Yanbin Weng, Meng Xu, Xiahu Chen, Cheng Peng, Hui Xiang, Peixin Xie, Hua Yin","doi":"10.3390/ijgi13090309","DOIUrl":null,"url":null,"abstract":"The accurate detection of railway tracks is essential for ensuring the safe operation of railways. This study introduces an innovative algorithm that utilizes a graph convolutional network (GCN) and deep neural residual network to enhance feature extraction from high-resolution aerial imagery. The traditional encoder–decoder architecture is expanded with GCN, which improves neighborhood definitions and enables long-range information exchange in a single layer. As a result, complex track features and contextual information are captured more effectively. The deep neural residual network, which incorporates depthwise separable convolution and an inverted bottleneck design, improves the representation of long-distance positional information and addresses occlusion caused by train carriages. The scSE attention mechanism reduces noise and optimizes feature representation. The algorithm was trained and tested on custom and Massachusetts datasets, demonstrating an 89.79% recall rate. This is a 3.17% improvement over the original U-Net model, indicating excellent performance in railway track segmentation. These findings suggest that the proposed algorithm not only excels in railway track segmentation but also offers significant competitive advantages in performance.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate detection of railway tracks is essential for ensuring the safe operation of railways. This study introduces an innovative algorithm that utilizes a graph convolutional network (GCN) and deep neural residual network to enhance feature extraction from high-resolution aerial imagery. The traditional encoder–decoder architecture is expanded with GCN, which improves neighborhood definitions and enables long-range information exchange in a single layer. As a result, complex track features and contextual information are captured more effectively. The deep neural residual network, which incorporates depthwise separable convolution and an inverted bottleneck design, improves the representation of long-distance positional information and addresses occlusion caused by train carriages. The scSE attention mechanism reduces noise and optimizes feature representation. The algorithm was trained and tested on custom and Massachusetts datasets, demonstrating an 89.79% recall rate. This is a 3.17% improvement over the original U-Net model, indicating excellent performance in railway track segmentation. These findings suggest that the proposed algorithm not only excels in railway track segmentation but also offers significant competitive advantages in performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间通道图卷积网络和深度神经残差网络的高效铁轨提取算法
准确检测铁轨对确保铁路安全运行至关重要。本研究引入了一种创新算法,利用图卷积网络(GCN)和深度神经残差网络来增强高分辨率航空图像的特征提取。GCN 扩展了传统的编码器-解码器架构,改进了邻域定义,并在单层中实现了远距离信息交换。因此,可以更有效地捕捉复杂的轨迹特征和上下文信息。深度神经残差网络采用了深度可分离卷积和倒置瓶颈设计,改进了长距离位置信息的表示,并解决了列车车厢造成的遮挡问题。scSE 注意机制可减少噪声并优化特征表示。该算法在定制数据集和马萨诸塞州数据集上进行了训练和测试,结果显示召回率为 89.79%。这比原始 U-Net 模型提高了 3.17%,表明该算法在铁轨分割方面表现出色。这些研究结果表明,所提出的算法不仅在铁路轨道分割方面表现出色,而且在性能方面也具有显著的竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1