T. V. Krasnyakova, D. V. Nikitenko, A. A. Gusev, V. G. But’ko, S. A. Mitchenko
{"title":"Vinyl Iodide Homocoupling Catalyzed by Platinum(II) Iodo Complexes: A DFT Study","authors":"T. V. Krasnyakova, D. V. Nikitenko, A. A. Gusev, V. G. But’ko, S. A. Mitchenko","doi":"10.1134/S0023158424601700","DOIUrl":null,"url":null,"abstract":"<p>The energy profile for vinyl iodide (RI) electrophile C(<i>sp</i><sup>2</sup>)–C(<i>sp</i><sup>2</sup>) homocoupling catalyzed by platinum(II) iodo complexes has been theoretically evaluated by the DFT method using the hybrid meta exchange-correlation functional M06 and the LANL2DZ basis set in the Gaussian09 software package. The reaction mechanism proposed earlier on the basis of experimental data was confirmed, consisting of the sequence of the following steps: R<sup>I</sup> oxidative addition to Pt<sup>II</sup> to form the intermediate compound RPt<sup>IV</sup>— reduction of the latter by iodide ions into RPt<sup>II</sup>—RI oxidative addition to form R<sub>2</sub>Pt<sup>IV</sup>—reductive elimination to yield the final butadiene-1,3. The highest activation barrier was found for the oxidative addition of the second vinyl iodide molecule, which is consistent with the experimental fact that the overall catalytic reaction rate is limited by just this step.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0023158424601700","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The energy profile for vinyl iodide (RI) electrophile C(sp2)–C(sp2) homocoupling catalyzed by platinum(II) iodo complexes has been theoretically evaluated by the DFT method using the hybrid meta exchange-correlation functional M06 and the LANL2DZ basis set in the Gaussian09 software package. The reaction mechanism proposed earlier on the basis of experimental data was confirmed, consisting of the sequence of the following steps: RI oxidative addition to PtII to form the intermediate compound RPtIV— reduction of the latter by iodide ions into RPtII—RI oxidative addition to form R2PtIV—reductive elimination to yield the final butadiene-1,3. The highest activation barrier was found for the oxidative addition of the second vinyl iodide molecule, which is consistent with the experimental fact that the overall catalytic reaction rate is limited by just this step.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.