{"title":"Investigating Removal of Carbamazepine by Helianthus annuus Plant Cells","authors":"Samyuktha Srinivasan, Smita Srivastava","doi":"10.1007/s11270-024-07420-x","DOIUrl":null,"url":null,"abstract":"<div><p>Dependence on reclaimed wastewater and biosolids for agronomic use in semi-arid and arid regions is progressively increasing across the globe. The impact of contamination of treated water with residues of recalcitrant pharmaceuticals on the ecosystem is now one of the major environmental concerns. Common sunflower, <i>Helianthus annuus</i> (<i>H. annuus</i>), has been reported to remove one of the recalcitrant pharmaceuticals, carbamazepine (CBZ). However, it's potential to tolerate CBZ is not yet characterized. For this, the plant cell suspension system of <i>H. annuus</i> (6.67 g DWL<sup>-1</sup>) was used as a model system and within 6 h of exposure to CBZ (15 ppm), 39.47 ± 6.8% was found to be removed with initial removal rate of 0.987 ± 0.17 mg L <sup>−1</sup> h<sup>−1</sup>. The adsorption equilibrium data was fitted with the Freundlich isotherm and the removal kinetics of CBZ onto plant cells of <i>H. annuus</i> was correlated well with Elovich kinetics. Also, no significant change in the viability and antioxidant levels (Ascorbate peroxidase and Glutathione peroxidase) was observed in the plant cells exposed to higher concentrations of CBZ (15 ppm), demonstrating high tolerance. The finding strongly indicates that <i>in-vitro</i> system of <i>H. annuus</i> holds significant promise as a robust platform for investigating the intricate mechanisms underlying its tolerance to CBZ.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07420-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dependence on reclaimed wastewater and biosolids for agronomic use in semi-arid and arid regions is progressively increasing across the globe. The impact of contamination of treated water with residues of recalcitrant pharmaceuticals on the ecosystem is now one of the major environmental concerns. Common sunflower, Helianthus annuus (H. annuus), has been reported to remove one of the recalcitrant pharmaceuticals, carbamazepine (CBZ). However, it's potential to tolerate CBZ is not yet characterized. For this, the plant cell suspension system of H. annuus (6.67 g DWL-1) was used as a model system and within 6 h of exposure to CBZ (15 ppm), 39.47 ± 6.8% was found to be removed with initial removal rate of 0.987 ± 0.17 mg L −1 h−1. The adsorption equilibrium data was fitted with the Freundlich isotherm and the removal kinetics of CBZ onto plant cells of H. annuus was correlated well with Elovich kinetics. Also, no significant change in the viability and antioxidant levels (Ascorbate peroxidase and Glutathione peroxidase) was observed in the plant cells exposed to higher concentrations of CBZ (15 ppm), demonstrating high tolerance. The finding strongly indicates that in-vitro system of H. annuus holds significant promise as a robust platform for investigating the intricate mechanisms underlying its tolerance to CBZ.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.