AutoPET Challenge: Tumour Synthesis for Data Augmentation

Lap Yan Lennon Chan, Chenxin Li, Yixuan Yuan
{"title":"AutoPET Challenge: Tumour Synthesis for Data Augmentation","authors":"Lap Yan Lennon Chan, Chenxin Li, Yixuan Yuan","doi":"arxiv-2409.08068","DOIUrl":null,"url":null,"abstract":"Accurate lesion segmentation in whole-body PET/CT scans is crucial for cancer\ndiagnosis and treatment planning, but limited datasets often hinder the\nperformance of automated segmentation models. In this paper, we explore the\npotential of leveraging the deep prior from a generative model to serve as a\ndata augmenter for automated lesion segmentation in PET/CT scans. We adapt the\nDiffTumor method, originally designed for CT images, to generate synthetic\nPET-CT images with lesions. Our approach trains the generative model on the\nAutoPET dataset and uses it to expand the training data. We then compare the\nperformance of segmentation models trained on the original and augmented\ndatasets. Our findings show that the model trained on the augmented dataset\nachieves a higher Dice score, demonstrating the potential of our data\naugmentation approach. In a nutshell, this work presents a promising direction\nfor improving lesion segmentation in whole-body PET/CT scans with limited\ndatasets, potentially enhancing the accuracy and reliability of cancer\ndiagnostics.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate lesion segmentation in whole-body PET/CT scans is crucial for cancer diagnosis and treatment planning, but limited datasets often hinder the performance of automated segmentation models. In this paper, we explore the potential of leveraging the deep prior from a generative model to serve as a data augmenter for automated lesion segmentation in PET/CT scans. We adapt the DiffTumor method, originally designed for CT images, to generate synthetic PET-CT images with lesions. Our approach trains the generative model on the AutoPET dataset and uses it to expand the training data. We then compare the performance of segmentation models trained on the original and augmented datasets. Our findings show that the model trained on the augmented dataset achieves a higher Dice score, demonstrating the potential of our data augmentation approach. In a nutshell, this work presents a promising direction for improving lesion segmentation in whole-body PET/CT scans with limited datasets, potentially enhancing the accuracy and reliability of cancer diagnostics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoPET 挑战:用于数据增强的肿瘤合成
全身 PET/CT 扫描中准确的病灶分割对癌症诊断和治疗计划至关重要,但有限的数据集往往会阻碍自动分割模型的性能。在本文中,我们探索了利用生成模型的深度先验作为 PET/CT 扫描中病灶自动分割的数据增强器的潜力。我们调整了最初为 CT 图像设计的 DiffTumor 方法,以生成带有病灶的合成 PET-CT 图像。我们的方法在自动 PET 数据集上训练生成模型,并用它来扩展训练数据。然后,我们比较了在原始数据集和增强数据集上训练的分割模型的性能。我们的研究结果表明,在扩增数据集上训练的模型获得了更高的 Dice 分数,证明了我们的数据扩增方法的潜力。总之,这项工作为改进数据集有限的全身 PET/CT 扫描中的病灶分割提供了一个很有前景的方向,有可能提高癌症诊断的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1