OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation

Shun Zou, Zhuo Zhang, Guangwei Gao
{"title":"OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation","authors":"Shun Zou, Zhuo Zhang, Guangwei Gao","doi":"arxiv-2409.08000","DOIUrl":null,"url":null,"abstract":"Optical Coherence Tomography Angiography (OCTA) is a crucial imaging\ntechnique for visualizing retinal vasculature and diagnosing eye diseases such\nas diabetic retinopathy and glaucoma. However, precise segmentation of OCTA\nvasculature remains challenging due to the multi-scale vessel structures and\nnoise from poor image quality and eye lesions. In this study, we proposed\nOCTAMamba, a novel U-shaped network based on the Mamba architecture, designed\nto segment vasculature in OCTA accurately. OCTAMamba integrates a Quad Stream\nEfficient Mining Embedding Module for local feature extraction, a Multi-Scale\nDilated Asymmetric Convolution Module to capture multi-scale vasculature, and a\nFocused Feature Recalibration Module to filter noise and highlight target\nareas. Our method achieves efficient global modeling and local feature\nextraction while maintaining linear complexity, making it suitable for\nlow-computation medical applications. Extensive experiments on the OCTA 3M,\nOCTA 6M, and ROSSA datasets demonstrated that OCTAMamba outperforms\nstate-of-the-art methods, providing a new reference for efficient OCTA\nsegmentation. Code is available at https://github.com/zs1314/OCTAMamba","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical Coherence Tomography Angiography (OCTA) is a crucial imaging technique for visualizing retinal vasculature and diagnosing eye diseases such as diabetic retinopathy and glaucoma. However, precise segmentation of OCTA vasculature remains challenging due to the multi-scale vessel structures and noise from poor image quality and eye lesions. In this study, we proposed OCTAMamba, a novel U-shaped network based on the Mamba architecture, designed to segment vasculature in OCTA accurately. OCTAMamba integrates a Quad Stream Efficient Mining Embedding Module for local feature extraction, a Multi-Scale Dilated Asymmetric Convolution Module to capture multi-scale vasculature, and a Focused Feature Recalibration Module to filter noise and highlight target areas. Our method achieves efficient global modeling and local feature extraction while maintaining linear complexity, making it suitable for low-computation medical applications. Extensive experiments on the OCTA 3M, OCTA 6M, and ROSSA datasets demonstrated that OCTAMamba outperforms state-of-the-art methods, providing a new reference for efficient OCTA segmentation. Code is available at https://github.com/zs1314/OCTAMamba
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OCTAMamba:用于精确 OCTA 血管分割的状态空间模型方法
光学相干断层扫描血管成像(OCTA)是观察视网膜血管和诊断糖尿病视网膜病变和青光眼等眼科疾病的重要成像技术。然而,由于多尺度血管结构以及图像质量差和眼部病变造成的噪声,对 OCTA 血管进行精确分割仍具有挑战性。在这项研究中,我们提出了基于 Mamba 架构的新型 U 形网络 OCTAMamba,旨在精确分割 OCTA 中的血管。OCTAMamba 集成了用于局部特征提取的 Quad StreamEfficient Mining Embedding 模块、用于捕捉多尺度脉管的 Multi-ScaleDilated Asymmetric Convolution 模块以及用于过滤噪声和突出目标区域的 Focused Feature Recalibration 模块。我们的方法在保持线性复杂度的同时,实现了高效的全局建模和局部特征提取,使其适用于低运算量的医疗应用。在 OCTA 3M、OCTA 6M 和 ROSSA 数据集上的广泛实验表明,OCTAMamba 的性能优于最先进的方法,为高效的 OCTA 分割提供了新的参考。代码见 https://github.com/zs1314/OCTAMamba
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1