Calum Green, Sharif Ahmed, Shashidhara Marathe, Liam Perera, Alberto Leonardi, Killian Gmyrek, Daniele Dini, James Le Houx
{"title":"Three-Dimensional, Multimodal Synchrotron Data for Machine Learning Applications","authors":"Calum Green, Sharif Ahmed, Shashidhara Marathe, Liam Perera, Alberto Leonardi, Killian Gmyrek, Daniele Dini, James Le Houx","doi":"arxiv-2409.07322","DOIUrl":null,"url":null,"abstract":"Machine learning techniques are being increasingly applied in medical and\nphysical sciences across a variety of imaging modalities; however, an important\nissue when developing these tools is the availability of good quality training\ndata. Here we present a unique, multimodal synchrotron dataset of a bespoke\nzinc-doped Zeolite 13X sample that can be used to develop advanced deep\nlearning and data fusion pipelines. Multi-resolution micro X-ray computed\ntomography was performed on a zinc-doped Zeolite 13X fragment to characterise\nits pores and features, before spatially resolved X-ray diffraction computed\ntomography was carried out to characterise the homogeneous distribution of\nsodium and zinc phases. Zinc absorption was controlled to create a simple,\nspatially isolated, two-phase material. Both raw and processed data is\navailable as a series of Zenodo entries. Altogether we present a spatially\nresolved, three-dimensional, multimodal, multi-resolution dataset that can be\nused for the development of machine learning techniques. Such techniques\ninclude development of super-resolution, multimodal data fusion, and 3D\nreconstruction algorithm development.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning techniques are being increasingly applied in medical and
physical sciences across a variety of imaging modalities; however, an important
issue when developing these tools is the availability of good quality training
data. Here we present a unique, multimodal synchrotron dataset of a bespoke
zinc-doped Zeolite 13X sample that can be used to develop advanced deep
learning and data fusion pipelines. Multi-resolution micro X-ray computed
tomography was performed on a zinc-doped Zeolite 13X fragment to characterise
its pores and features, before spatially resolved X-ray diffraction computed
tomography was carried out to characterise the homogeneous distribution of
sodium and zinc phases. Zinc absorption was controlled to create a simple,
spatially isolated, two-phase material. Both raw and processed data is
available as a series of Zenodo entries. Altogether we present a spatially
resolved, three-dimensional, multimodal, multi-resolution dataset that can be
used for the development of machine learning techniques. Such techniques
include development of super-resolution, multimodal data fusion, and 3D
reconstruction algorithm development.