Interactive 3D Segmentation for Primary Gross Tumor Volume in Oropharyngeal Cancer

Mikko Saukkoriipi, Jaakko Sahlsten, Joel Jaskari, Lotta Orasmaa, Jari Kangas, Nastaran Rasouli, Roope Raisamo, Jussi Hirvonen, Helena Mehtonen, Jorma Järnstedt, Antti Mäkitie, Mohamed Naser, Clifton Fuller, Benjamin Kann, Kimmo Kaski
{"title":"Interactive 3D Segmentation for Primary Gross Tumor Volume in Oropharyngeal Cancer","authors":"Mikko Saukkoriipi, Jaakko Sahlsten, Joel Jaskari, Lotta Orasmaa, Jari Kangas, Nastaran Rasouli, Roope Raisamo, Jussi Hirvonen, Helena Mehtonen, Jorma Järnstedt, Antti Mäkitie, Mohamed Naser, Clifton Fuller, Benjamin Kann, Kimmo Kaski","doi":"arxiv-2409.06605","DOIUrl":null,"url":null,"abstract":"The main treatment modality for oropharyngeal cancer (OPC) is radiotherapy,\nwhere accurate segmentation of the primary gross tumor volume (GTVp) is\nessential. However, accurate GTVp segmentation is challenging due to\nsignificant interobserver variability and the time-consuming nature of manual\nannotation, while fully automated methods can occasionally fail. An interactive\ndeep learning (DL) model offers the advantage of automatic high-performance\nsegmentation with the flexibility for user correction when necessary. In this\nstudy, we examine interactive DL for GTVp segmentation in OPC. We implement\nstate-of-the-art algorithms and propose a novel two-stage Interactive Click\nRefinement (2S-ICR) framework. Using the 2021 HEad and neCK TumOR (HECKTOR)\ndataset for development and an external dataset from The University of Texas MD\nAnderson Cancer Center for evaluation, the 2S-ICR framework achieves a Dice\nsimilarity coefficient of 0.713 $\\pm$ 0.152 without user interaction and 0.824\n$\\pm$ 0.099 after five interactions, outperforming existing methods in both\ncases.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main treatment modality for oropharyngeal cancer (OPC) is radiotherapy, where accurate segmentation of the primary gross tumor volume (GTVp) is essential. However, accurate GTVp segmentation is challenging due to significant interobserver variability and the time-consuming nature of manual annotation, while fully automated methods can occasionally fail. An interactive deep learning (DL) model offers the advantage of automatic high-performance segmentation with the flexibility for user correction when necessary. In this study, we examine interactive DL for GTVp segmentation in OPC. We implement state-of-the-art algorithms and propose a novel two-stage Interactive Click Refinement (2S-ICR) framework. Using the 2021 HEad and neCK TumOR (HECKTOR) dataset for development and an external dataset from The University of Texas MD Anderson Cancer Center for evaluation, the 2S-ICR framework achieves a Dice similarity coefficient of 0.713 $\pm$ 0.152 without user interaction and 0.824 $\pm$ 0.099 after five interactions, outperforming existing methods in both cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
口咽癌原发总肿瘤体积的交互式三维分割技术
口咽癌(OPC)的主要治疗方式是放射治疗,其中准确分割原发肿瘤总体积(GTVp)至关重要。然而,由于观察者之间存在显著差异,而且人工标注耗时,准确的 GTVp 分割极具挑战性,而全自动方法偶尔也会失败。交互式深度学习(DL)模型具有自动进行高性能分割的优势,而且在必要时用户可以灵活地进行修正。在本研究中,我们研究了用于 OPC 中 GTVp 分割的交互式深度学习。我们采用了最先进的算法,并提出了一种新颖的两阶段交互式点击再细化(2S-ICR)框架。使用2021 HEad and neCK Tumor(HECKTOR)数据集进行开发,并使用德克萨斯大学MDAnderson癌症中心的外部数据集进行评估,2S-ICR框架在没有用户交互的情况下实现了0.713美元/pm$ 0.152的相似系数,在5次交互后实现了0.824美元/pm$ 0.099的相似系数,在这两种情况下均优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1