Enhancing Surface Water Monitoring through Multi-Satellite Data-Fusion of Landsat-8/9, Sentinel-2, and Sentinel-1 SAR

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Pub Date : 2024-09-08 DOI:10.3390/rs16173329
Alexis Declaro, Shinjiro Kanae
{"title":"Enhancing Surface Water Monitoring through Multi-Satellite Data-Fusion of Landsat-8/9, Sentinel-2, and Sentinel-1 SAR","authors":"Alexis Declaro, Shinjiro Kanae","doi":"10.3390/rs16173329","DOIUrl":null,"url":null,"abstract":"Long revisit intervals and cloud susceptibility have restricted the applicability of earth observation satellites in surface water studies. Integrating multiple satellites offers potential for more frequent observations, yet combining different satellite sources, particularly optical and SAR satellites, presents complexities. This research explores the data-fusion potential and limitations of Landsat-8/9 Operational Land Imager (OLI), Sentinel-2 Multispectral Instrument (MSI), and Sentinel-1 Synthetic Aperture (SAR) satellites to enhance surface water monitoring. By focusing on segmented surface water images, we demonstrate that combining optical and SAR data is generally effective and straightforward using a simple statistical thresholding algorithm. Kappa coefficients(κ) ranging from 0.80 to 0.95 indicate very strong harmony for integration across reservoirs, lakes, and river environments. In vegetative environments, integration with S1SAR shows weak harmony, with κ values ranging from 0.27 to 0.45, indicating the need for further studies. Global revisit interval maps reveal significant improvement in median revisit intervals from 15.87 to 22.81 days using L8/9 alone, to 4.51 to 7.77 days after incorporating S2, and further to 3.48 to 4.62 days after adding S1SAR. Even during wet season months, multi-satellite fusion maintained the median revisit intervals to less than a week. Maximizing all available open-source earth observation satellites is integral for advancing studies requiring more frequent surface water observations, such as flood, inundation, and hydrological modeling.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"10 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16173329","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Long revisit intervals and cloud susceptibility have restricted the applicability of earth observation satellites in surface water studies. Integrating multiple satellites offers potential for more frequent observations, yet combining different satellite sources, particularly optical and SAR satellites, presents complexities. This research explores the data-fusion potential and limitations of Landsat-8/9 Operational Land Imager (OLI), Sentinel-2 Multispectral Instrument (MSI), and Sentinel-1 Synthetic Aperture (SAR) satellites to enhance surface water monitoring. By focusing on segmented surface water images, we demonstrate that combining optical and SAR data is generally effective and straightforward using a simple statistical thresholding algorithm. Kappa coefficients(κ) ranging from 0.80 to 0.95 indicate very strong harmony for integration across reservoirs, lakes, and river environments. In vegetative environments, integration with S1SAR shows weak harmony, with κ values ranging from 0.27 to 0.45, indicating the need for further studies. Global revisit interval maps reveal significant improvement in median revisit intervals from 15.87 to 22.81 days using L8/9 alone, to 4.51 to 7.77 days after incorporating S2, and further to 3.48 to 4.62 days after adding S1SAR. Even during wet season months, multi-satellite fusion maintained the median revisit intervals to less than a week. Maximizing all available open-source earth observation satellites is integral for advancing studies requiring more frequent surface water observations, such as flood, inundation, and hydrological modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过融合 Landsat-8/9、Sentinel-2 和 Sentinel-1 SAR 的多卫星数据加强地表水监测
较长的重访间隔和云的易感性限制了地球观测卫星在地表水研究中的应用。整合多颗卫星为更频繁地进行观测提供了可能,但整合不同的卫星来源,尤其是光学和合成孔径雷达卫星,却带来了复杂的问题。本研究探讨了 Landsat-8/9 业务陆地成像仪(OLI)、哨兵-2 多光谱仪器(MSI)和哨兵-1 合成孔径(SAR)卫星的数据融合潜力和局限性,以加强地表水监测。通过聚焦于地表水图像的分割,我们证明了使用简单的统计阈值算法将光学数据和合成孔径雷达数据结合起来通常是有效和直接的。Kappa 系数(κ)从 0.80 到 0.95 不等,表明在水库、湖泊和河流环境中的整合非常和谐。在植被环境中,与 S1SAR 的整合显示出微弱的协调性,κ 值在 0.27 到 0.45 之间,表明需要进一步研究。全球重访间隔图显示,仅使用 L8/9 时,中位重访间隔从 15.87 天到 22.81 天显著缩短,加入 S2 后,中位重访间隔从 4.51 天到 7.77 天显著缩短,加入 S1SAR 后,中位重访间隔进一步缩短到 3.48 天到 4.62 天。即使在雨季月份,多卫星融合也能将中位重访间隔保持在一周以内。最大限度地利用所有可用的开放源码地球观测卫星对于推进需要更频繁地观测地表水的研究(如洪水、淹没和水文建模)是不可或缺的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery Development of a Background Filtering Algorithm to Improve the Accuracy of Determining Underground Cavities Using Multi-Channel Ground-Penetrating Radar and Deep Learning Enhancing Digital Twins with Human Movement Data: A Comparative Study of Lidar-Based Tracking Methods Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time Mini-Satellite Fucheng 1 SAR: Interferometry to Monitor Mining-Induced Subsidence and Comparative Analysis with Sentinel-1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1