Functional Limit Theorems for Dynamical Systems with Correlated Maximal Sets

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Journal of Statistical Physics Pub Date : 2024-08-27 DOI:10.1007/s10955-024-03322-8
Raquel Couto
{"title":"Functional Limit Theorems for Dynamical Systems with Correlated Maximal Sets","authors":"Raquel Couto","doi":"10.1007/s10955-024-03322-8","DOIUrl":null,"url":null,"abstract":"<div><p>In order to obtain functional limit theorems for heavy-tailed stationary processes arising from dynamical systems, one needs to understand the clustering patterns of the tail observations of the process. These patterns are well described by means of a structure called the pilling process introduced recently in the context of dynamical systems. So far, the pilling process has been computed only for observable functions maximised at a single repelling fixed point. Here, we study richer clustering behaviours by considering correlated maximal sets, in the sense that the observable is maximised in multiple points belonging to the same orbit, and we work out explicit expressions for the pilling process when the dynamics is piecewise linear and expanding (1-dimensional and 2-dimensional).</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 9","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03322-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03322-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to obtain functional limit theorems for heavy-tailed stationary processes arising from dynamical systems, one needs to understand the clustering patterns of the tail observations of the process. These patterns are well described by means of a structure called the pilling process introduced recently in the context of dynamical systems. So far, the pilling process has been computed only for observable functions maximised at a single repelling fixed point. Here, we study richer clustering behaviours by considering correlated maximal sets, in the sense that the observable is maximised in multiple points belonging to the same orbit, and we work out explicit expressions for the pilling process when the dynamics is piecewise linear and expanding (1-dimensional and 2-dimensional).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有相关最大集的动力系统的函数极限定理
为了获得由动力系统产生的重尾静止过程的函数极限定理,我们需要了解过程尾部观测值的聚类模式。最近在动力学系统中引入的一种名为 "pilling process "的结构可以很好地描述这些模式。迄今为止,我们只计算了在单个排斥固定点上最大化的可观测函数的聚类过程。在这里,我们通过考虑相关最大集(即在属于同一轨道的多个点上观测值最大化)来研究更丰富的聚类行为,并在动力学为片断线性和扩展(1 维和 2 维)时计算出了起球过程的明确表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
期刊最新文献
Entropy-Driven Dimerization Quasi-Stationary Distributions of Non-Absorbing Markov Chains Symmetry Classes of Classical Stochastic Processes Numerical Prediction of the Steady-State Distribution Under Stochastic Resetting from Measurements Analysis of Stochastic Chemical Reaction Networks with a Hierarchy of Timescales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1