Inferring Kinetics and Entropy Production from Observable Transitions in Partially Accessible, Periodically Driven Markov Networks

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Journal of Statistical Physics Pub Date : 2024-08-14 DOI:10.1007/s10955-024-03315-7
Alexander M. Maier, Julius Degünther, Jann van der Meer, Udo Seifert
{"title":"Inferring Kinetics and Entropy Production from Observable Transitions in Partially Accessible, Periodically Driven Markov Networks","authors":"Alexander M. Maier,&nbsp;Julius Degünther,&nbsp;Jann van der Meer,&nbsp;Udo Seifert","doi":"10.1007/s10955-024-03315-7","DOIUrl":null,"url":null,"abstract":"<div><p>For a network of discrete states with a periodically driven Markovian dynamics, we develop an inference scheme for an external observer who has access to some transitions. Based on waiting-time distributions between these transitions, the periodic probabilities of states connected by these observed transitions and their time-dependent transition rates can be inferred. Moreover, the smallest number of hidden transitions between accessible ones and some of their transition rates can be extracted. We prove and conjecture lower bounds on the total entropy production for such periodic stationary states. Even though our techniques are based on generalizations of known methods for steady states, we obtain original results for those as well.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03315-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03315-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For a network of discrete states with a periodically driven Markovian dynamics, we develop an inference scheme for an external observer who has access to some transitions. Based on waiting-time distributions between these transitions, the periodic probabilities of states connected by these observed transitions and their time-dependent transition rates can be inferred. Moreover, the smallest number of hidden transitions between accessible ones and some of their transition rates can be extracted. We prove and conjecture lower bounds on the total entropy production for such periodic stationary states. Even though our techniques are based on generalizations of known methods for steady states, we obtain original results for those as well.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从部分可访问、周期性驱动马尔可夫网络中的可观测转换推断动力学和熵的产生
对于一个具有周期性马尔可夫动态的离散状态网络,我们开发了一种外部观察者推理方案,该观察者可以获取一些转换信息。根据这些转换之间的等待时间分布,可以推断出这些观察到的转换所连接的状态的周期概率及其随时间变化的转换率。此外,还可以提取可访问状态之间的最小隐藏转换数及其部分转换率。我们证明并猜测了这种周期性静止状态的总熵产生下限。尽管我们的技术是基于对已知稳态方法的概括,但我们也获得了针对这些稳态的原创性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
期刊最新文献
Hidden Temperature in the KMP Model Bad Local Minima Exist in the Stochastic Block Model Polymer in a Multi-Interface Medium with Weak Repulsion Condensation in Zero-Range Processes with a Fast Rate Lattice Fundamental Measure Theory Beyond 0D Cavities: Dimers on Square Lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1