Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Pub Date : 2024-09-13 DOI:10.3390/rs16183404
Leonardo Laipelt, Julia Brusso Rossi, Bruno Comini de Andrade, Morris Scherer-Warren, Anderson Ruhoff
{"title":"Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates","authors":"Leonardo Laipelt, Julia Brusso Rossi, Bruno Comini de Andrade, Morris Scherer-Warren, Anderson Ruhoff","doi":"10.3390/rs16183404","DOIUrl":null,"url":null,"abstract":"The expansion of cropland in tropical regions has significantly accelerated in recent decades, triggering an escalation in water demand and changing the total water loss to the atmosphere (evapotranspiration). Additionally, the increase in areas dedicated to agriculture in tropical climates coincides with an increased frequency of drought events, leading to a series of conflicts among water users. However, detailed studies on the impacts of changes in water use due to agriculture expansion, including irrigation, are still lacking. Furthermore, the higher presence of clouds in tropical environments poses challenges for the availability of high-resolution data for vegetation monitoring via satellite images. This study aims to analyze 37 years of agricultural expansion using the Landsat collection and a satellite-based model (geeSEBAL) to assess changes in evapotranspiration resulting from cropland expansion in tropical climates, focusing on the São Marcos River Basin in Brazil. It also used a methodology for estimating daily evapotranspiration on days without satellite images. The results showed a 34% increase in evapotranspiration from rainfed areas, mainly driven by soybean cultivation. In addition, irrigated areas increased their water use, despite not significantly changing water use at the basin scale. Conversely, natural vegetation areas decreased their evapotranspiration rates by 22%, suggesting possible further implications with advancing changes in land use and land cover. Thus, this study underscores the importance of using satellite-based evapotranspiration estimates to enhance our understanding of water use across different land use types and scales, thereby improving water management strategies on a large scale.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"3 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183404","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The expansion of cropland in tropical regions has significantly accelerated in recent decades, triggering an escalation in water demand and changing the total water loss to the atmosphere (evapotranspiration). Additionally, the increase in areas dedicated to agriculture in tropical climates coincides with an increased frequency of drought events, leading to a series of conflicts among water users. However, detailed studies on the impacts of changes in water use due to agriculture expansion, including irrigation, are still lacking. Furthermore, the higher presence of clouds in tropical environments poses challenges for the availability of high-resolution data for vegetation monitoring via satellite images. This study aims to analyze 37 years of agricultural expansion using the Landsat collection and a satellite-based model (geeSEBAL) to assess changes in evapotranspiration resulting from cropland expansion in tropical climates, focusing on the São Marcos River Basin in Brazil. It also used a methodology for estimating daily evapotranspiration on days without satellite images. The results showed a 34% increase in evapotranspiration from rainfed areas, mainly driven by soybean cultivation. In addition, irrigated areas increased their water use, despite not significantly changing water use at the basin scale. Conversely, natural vegetation areas decreased their evapotranspiration rates by 22%, suggesting possible further implications with advancing changes in land use and land cover. Thus, this study underscores the importance of using satellite-based evapotranspiration estimates to enhance our understanding of water use across different land use types and scales, thereby improving water management strategies on a large scale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估热带气候条件下耕地扩张带来的蒸散变化
近几十年来,热带地区的耕地扩张速度明显加快,引发了对水的需求升级,并改变了向大气流失的总水量(蒸散量)。此外,在热带气候下,农业用地面积增加的同时,干旱事件的发生频率也在增加,导致用水户之间发生一系列冲突。然而,目前仍缺乏对农业扩张(包括灌溉)导致用水变化的影响的详细研究。此外,热带环境中云层较多,这给通过卫星图像进行植被监测的高分辨率数据的获取带来了挑战。本研究旨在利用大地遥感卫星采集数据和基于卫星的模型(geeSEBAL)对 37 年的农业扩张进行分析,以评估热带气候下耕地扩张导致的蒸散量变化,重点关注巴西圣马科斯河流域。该研究还采用了一种方法来估算没有卫星图像的日子里的日蒸散量。结果显示,主要受大豆种植的推动,雨水灌溉地区的蒸散量增加了 34%。此外,灌溉区的用水量也有所增加,尽管在流域尺度上用水量没有显著变化。相反,自然植被地区的蒸散率降低了 22%,这表明土地利用和土地覆盖的进一步变化可能会产生进一步的影响。因此,这项研究强调了利用基于卫星的蒸散估算来加强我们对不同土地利用类型和规模的用水情况的了解,从而改进大规模水资源管理策略的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery Development of a Background Filtering Algorithm to Improve the Accuracy of Determining Underground Cavities Using Multi-Channel Ground-Penetrating Radar and Deep Learning Enhancing Digital Twins with Human Movement Data: A Comparative Study of Lidar-Based Tracking Methods Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time Mini-Satellite Fucheng 1 SAR: Interferometry to Monitor Mining-Induced Subsidence and Comparative Analysis with Sentinel-1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1