{"title":"AMHFN: Aggregation Multi-Hierarchical Feature Network for Hyperspectral Image Classification","authors":"Xiaofei Yang, Yuxiong Luo, Zhen Zhang, Dong Tang, Zheng Zhou, Haojin Tang","doi":"10.3390/rs16183412","DOIUrl":null,"url":null,"abstract":"Deep learning methods like convolution neural networks (CNNs) and transformers are successfully applied in hyperspectral image (HSI) classification due to their ability to extract local contextual features and explore global dependencies, respectively. However, CNNs struggle in modeling long-term dependencies, and transformers may miss subtle spatial-spectral features. To address these challenges, this paper proposes an innovative hybrid HSI classification method aggregating hierarchical spatial-spectral features from a CNN and long pixel dependencies from a transformer. The proposed aggregation multi-hierarchical feature network (AMHFN) is designed to capture various hierarchical features and long dependencies from HSI, improving classification accuracy and efficiency. The proposed AMHFN consists of three key modules: (a) a Local-Pixel Embedding module (LPEM) for capturing prominent spatial-spectral features; (b) a Multi-Scale Convolutional Extraction (MSCE) module to capture multi-scale local spatial-spectral features and aggregate hierarchical local features; (c) a Multi-Scale Global Extraction (MSGE) module to explore multi-scale global dependencies and integrate multi-scale hierarchical global dependencies. Rigorous experiments on three public hyperspectral image (HSI) datasets demonstrated the superior performance of the proposed AMHFN method.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"165 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183412","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning methods like convolution neural networks (CNNs) and transformers are successfully applied in hyperspectral image (HSI) classification due to their ability to extract local contextual features and explore global dependencies, respectively. However, CNNs struggle in modeling long-term dependencies, and transformers may miss subtle spatial-spectral features. To address these challenges, this paper proposes an innovative hybrid HSI classification method aggregating hierarchical spatial-spectral features from a CNN and long pixel dependencies from a transformer. The proposed aggregation multi-hierarchical feature network (AMHFN) is designed to capture various hierarchical features and long dependencies from HSI, improving classification accuracy and efficiency. The proposed AMHFN consists of three key modules: (a) a Local-Pixel Embedding module (LPEM) for capturing prominent spatial-spectral features; (b) a Multi-Scale Convolutional Extraction (MSCE) module to capture multi-scale local spatial-spectral features and aggregate hierarchical local features; (c) a Multi-Scale Global Extraction (MSGE) module to explore multi-scale global dependencies and integrate multi-scale hierarchical global dependencies. Rigorous experiments on three public hyperspectral image (HSI) datasets demonstrated the superior performance of the proposed AMHFN method.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.