Wang Li, Fangsong Yang, Jiayi Yang, Renzhong Zhang, Juan Lin, Dongsheng Zhao, Craig M. Hancock
{"title":"Morphological Features of Severe Ionospheric Weather Associated with Typhoon Doksuri in 2023","authors":"Wang Li, Fangsong Yang, Jiayi Yang, Renzhong Zhang, Juan Lin, Dongsheng Zhao, Craig M. Hancock","doi":"10.3390/rs16183375","DOIUrl":null,"url":null,"abstract":"The atmospheric gravity waves (AGWs) generated by severe typhoons can facilitate the transfer of energy from the troposphere to the ionosphere, resulting in medium-scale traveling ionospheric disturbances (MSTIDs). However, the complex three-dimensional nature of MSTIDs over oceanic regions presents challenges for detection using ground-based Global Navigation Satellite System (GNSS) networks. This study employs a hybrid approach combining space-based and ground-based techniques to investigate the spatiotemporal characteristics of ionospheric perturbations during Typhoon Doksuri. Plane maps depict significant plasma fluctuations extending outward from the typhoon’s gale wind zone on 24 July, reaching distances of up to 1800 km from the typhoon’s center, while space weather conditions remained relatively calm. These ionospheric perturbations propagated at velocities between 173 m/s and 337 m/s, consistent with AGW features and associated propagation speeds. Vertical mapping reveals that energy originating from Typhoon Doksuri propagated upward through a 500 km layer, resulting in substantial enhancements of plasma density and temperature in the topside ionosphere. Notably, the topside horizontal density gradient was 1.5 to 2 times greater than that observed in the bottom-side ionosphere. Both modeling and observational data convincingly demonstrate that the weak background winds favored the generation of AGWs associated with Typhoon Doksuri, influencing the development of distinct MSTIDs.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"1 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183375","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The atmospheric gravity waves (AGWs) generated by severe typhoons can facilitate the transfer of energy from the troposphere to the ionosphere, resulting in medium-scale traveling ionospheric disturbances (MSTIDs). However, the complex three-dimensional nature of MSTIDs over oceanic regions presents challenges for detection using ground-based Global Navigation Satellite System (GNSS) networks. This study employs a hybrid approach combining space-based and ground-based techniques to investigate the spatiotemporal characteristics of ionospheric perturbations during Typhoon Doksuri. Plane maps depict significant plasma fluctuations extending outward from the typhoon’s gale wind zone on 24 July, reaching distances of up to 1800 km from the typhoon’s center, while space weather conditions remained relatively calm. These ionospheric perturbations propagated at velocities between 173 m/s and 337 m/s, consistent with AGW features and associated propagation speeds. Vertical mapping reveals that energy originating from Typhoon Doksuri propagated upward through a 500 km layer, resulting in substantial enhancements of plasma density and temperature in the topside ionosphere. Notably, the topside horizontal density gradient was 1.5 to 2 times greater than that observed in the bottom-side ionosphere. Both modeling and observational data convincingly demonstrate that the weak background winds favored the generation of AGWs associated with Typhoon Doksuri, influencing the development of distinct MSTIDs.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.