Doppler-Spread Space Target Detection Based on Overlapping Group Shrinkage and Order Statistics

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Pub Date : 2024-09-13 DOI:10.3390/rs16183413
Linsheng Bu, Tuo Fu, Defeng Chen, Huawei Cao, Shuo Zhang, Jialiang Han
{"title":"Doppler-Spread Space Target Detection Based on Overlapping Group Shrinkage and Order Statistics","authors":"Linsheng Bu, Tuo Fu, Defeng Chen, Huawei Cao, Shuo Zhang, Jialiang Han","doi":"10.3390/rs16183413","DOIUrl":null,"url":null,"abstract":"The Doppler-spread problem is commonly encountered in space target observation scenarios using ground-based radar when prolonged coherent integration techniques are utilized. Even when the translational motion is accurately compensated, the phase resulting from changes in the target observation attitude (TOA) still leads to extension of the target’s echo energy across multiple Doppler cells. In particular, as the TOA change undergoes multiple cycles within a coherent processing interval (CPI), the Doppler spectrum spreads into equidistant sparse line spectra, posing a substantial challenge for target detection. Aiming to address such problems, we propose a generalized likelihood ratio test based on overlapping group shrinkage denoising and order statistics (OGSos-GLRT) in this study. First, the Doppler domain signal is denoised according to its equidistant sparse characteristics, allowing for the recovery of Doppler cells where line spectra may be situated. Then, several of the largest Doppler cells are integrated into the GLRT for detection. An analytical expression for the false alarm probability of the proposed detector is also derived. Additionally, a modified OGSos-GLRT method is proposed to make decisions based on an increasing estimated number of line spectra (ENLS), thus increasing the robustness of OGSos-GLRT when the ENLS mismatches the actual value. Finally, Monte Carlo simulations confirm the effectiveness of the proposed detector, even at low signal-to-noise ratios (SNRs).","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"2 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183413","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Doppler-spread problem is commonly encountered in space target observation scenarios using ground-based radar when prolonged coherent integration techniques are utilized. Even when the translational motion is accurately compensated, the phase resulting from changes in the target observation attitude (TOA) still leads to extension of the target’s echo energy across multiple Doppler cells. In particular, as the TOA change undergoes multiple cycles within a coherent processing interval (CPI), the Doppler spectrum spreads into equidistant sparse line spectra, posing a substantial challenge for target detection. Aiming to address such problems, we propose a generalized likelihood ratio test based on overlapping group shrinkage denoising and order statistics (OGSos-GLRT) in this study. First, the Doppler domain signal is denoised according to its equidistant sparse characteristics, allowing for the recovery of Doppler cells where line spectra may be situated. Then, several of the largest Doppler cells are integrated into the GLRT for detection. An analytical expression for the false alarm probability of the proposed detector is also derived. Additionally, a modified OGSos-GLRT method is proposed to make decisions based on an increasing estimated number of line spectra (ENLS), thus increasing the robustness of OGSos-GLRT when the ENLS mismatches the actual value. Finally, Monte Carlo simulations confirm the effectiveness of the proposed detector, even at low signal-to-noise ratios (SNRs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于重叠群收缩和阶次统计的多普勒频谱空间目标探测
在使用地基雷达进行空间目标观测时,如果采用长时间相干积分技术,通常会遇到多普勒频散问题。即使平移运动得到精确补偿,目标观测姿态(TOA)变化产生的相位仍会导致目标回波能量扩展到多个多普勒单元。特别是,当 TOA 变化在一个相干处理间隔(CPI)内经历多个周期时,多普勒频谱会扩散为等距的稀疏线谱,从而给目标探测带来巨大挑战。为了解决这些问题,我们在本研究中提出了一种基于重叠群收缩去噪和阶次统计的广义似然比检验(OGSos-GLRT)。首先,根据多普勒域信号的等距稀疏特征对其进行去噪,从而恢复可能存在线谱的多普勒单元。然后,将几个最大的多普勒单元整合到 GLRT 中进行检测。此外,还推导出了拟议探测器误报概率的分析表达式。此外,还提出了一种改进的 OGSos-GLRT 方法,根据不断增加的估计线谱数(ENLS)做出决策,从而在 ENLS 与实际值不一致时提高 OGSos-GLRT 的鲁棒性。最后,蒙特卡罗模拟证实了所建议的探测器的有效性,即使在信噪比(SNR)较低的情况下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery Development of a Background Filtering Algorithm to Improve the Accuracy of Determining Underground Cavities Using Multi-Channel Ground-Penetrating Radar and Deep Learning Enhancing Digital Twins with Human Movement Data: A Comparative Study of Lidar-Based Tracking Methods Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time Mini-Satellite Fucheng 1 SAR: Interferometry to Monitor Mining-Induced Subsidence and Comparative Analysis with Sentinel-1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1