Jianye Yuan, Haofei Wang, Minghao Li, Xiaohan Wang, Weiwei Song, Song Li, Wei Gong
{"title":"FD-Net: A Single-Stage Fire Detection Framework for Remote Sensing in Complex Environments","authors":"Jianye Yuan, Haofei Wang, Minghao Li, Xiaohan Wang, Weiwei Song, Song Li, Wei Gong","doi":"10.3390/rs16183382","DOIUrl":null,"url":null,"abstract":"Fire detection is crucial due to the exorbitant annual toll on both human lives and the economy resulting from fire-related incidents. To enhance forest fire detection in complex environments, we propose a new algorithm called FD-Net for various environments. Firstly, to improve detection performance, we introduce a Fire Attention (FA) mechanism that utilizes the position information from feature maps. Secondly, to prevent geometric distortion during image cropping, we propose a Three-Scale Pooling (TSP) module. Lastly, we fine-tune the YOLOv5 network and incorporate a new Fire Fusion (FF) module to enhance the network’s precision in identifying fire targets. Through qualitative and quantitative comparisons, we found that FD-Net outperforms current state-of-the-art algorithms in performance on both fire and fire-and-smoke datasets. This further demonstrates FD-Net’s effectiveness for application in fire detection.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"50 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183382","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fire detection is crucial due to the exorbitant annual toll on both human lives and the economy resulting from fire-related incidents. To enhance forest fire detection in complex environments, we propose a new algorithm called FD-Net for various environments. Firstly, to improve detection performance, we introduce a Fire Attention (FA) mechanism that utilizes the position information from feature maps. Secondly, to prevent geometric distortion during image cropping, we propose a Three-Scale Pooling (TSP) module. Lastly, we fine-tune the YOLOv5 network and incorporate a new Fire Fusion (FF) module to enhance the network’s precision in identifying fire targets. Through qualitative and quantitative comparisons, we found that FD-Net outperforms current state-of-the-art algorithms in performance on both fire and fire-and-smoke datasets. This further demonstrates FD-Net’s effectiveness for application in fire detection.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.