Lei Tang, Xiangang Zhao, Xiuqing Hu, Chuyao Luo, Manjun Lin
{"title":"A Multi-Task Convolutional Neural Network Relative Radiometric Calibration Based on Temporal Information","authors":"Lei Tang, Xiangang Zhao, Xiuqing Hu, Chuyao Luo, Manjun Lin","doi":"10.3390/rs16173346","DOIUrl":null,"url":null,"abstract":"Due to the continuous degradation of onboard satellite instruments over time, satellite images undergo degradation, necessitating calibration for tasks reliant on satellite data. The previous relative radiometric calibration methods are mainly categorized into traditional methods and deep learning methods. The traditional methods involve complex computations for each calibration, while deep-learning-based approaches tend to oversimplify the calibration process, utilizing generic computer vision models without tailored structures for calibration tasks. In this paper, we address the unique challenges of calibration by introducing a novel approach: a multi-task convolutional neural network calibration model leveraging temporal information. This pioneering method is the first to integrate temporal dynamics into the architecture of neural network calibration models. Extensive experiments conducted on the FY3A/B/C VIRR datasets showcase the superior performance of our approach compared to the existing state-of-the-art traditional and deep learning methods. Furthermore, tests with various backbones confirm the broad applicability of our framework across different convolutional neural networks.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"6 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16173346","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the continuous degradation of onboard satellite instruments over time, satellite images undergo degradation, necessitating calibration for tasks reliant on satellite data. The previous relative radiometric calibration methods are mainly categorized into traditional methods and deep learning methods. The traditional methods involve complex computations for each calibration, while deep-learning-based approaches tend to oversimplify the calibration process, utilizing generic computer vision models without tailored structures for calibration tasks. In this paper, we address the unique challenges of calibration by introducing a novel approach: a multi-task convolutional neural network calibration model leveraging temporal information. This pioneering method is the first to integrate temporal dynamics into the architecture of neural network calibration models. Extensive experiments conducted on the FY3A/B/C VIRR datasets showcase the superior performance of our approach compared to the existing state-of-the-art traditional and deep learning methods. Furthermore, tests with various backbones confirm the broad applicability of our framework across different convolutional neural networks.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.