{"title":"HRTracker: Multi-Object Tracking in Satellite Video Enhanced by High-Resolution Feature Fusion and an Adaptive Data Association","authors":"Yuqi Wu, Qiaoyuan Liu, Haijiang Sun, Donglin Xue","doi":"10.3390/rs16173347","DOIUrl":null,"url":null,"abstract":"Multi-object tracking in satellite videos (SV-MOT) is an important task with many applications, such as traffic monitoring and disaster response. However, the widely studied multi-object tracking (MOT) approaches for general images can rarely be directly introduced into remote sensing scenarios. The main reasons for this can be attributed to the following: (1) the existing MOT approaches would cause a significant rate of missed detection of the small targets in satellite videos; (2) it is difficult for the general MOT approaches to generate complete trajectories in complex satellite scenarios. To address these problems, a novel SV-MOT approach enhanced by high-resolution feature fusion and a two-step association method is proposed. In the high-resolution detection network, a high-resolution feature fusion module is designed to assist detection by maintaining small object features in forward propagation. By utilizing features of different resolutions, the performance of the detection of small targets in satellite videos is improved. Through high-quality detection and the use of an adaptive Kalman filter, the densely packed weak objects can be effectively tracked by associating almost every detection box instead of only the high-score ones. The comprehensive experimental results using the representative satellite video datasets (VISO) demonstrate that the proposed HRTracker with the state-of-the-art (SOTA) methods can achieve competitive performance in terms of the tracking accuracy and the frequency of ID conversion, obtaining a tracking accuracy score of 74.6% and an ID F1 score of 78.9%.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"44 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16173347","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-object tracking in satellite videos (SV-MOT) is an important task with many applications, such as traffic monitoring and disaster response. However, the widely studied multi-object tracking (MOT) approaches for general images can rarely be directly introduced into remote sensing scenarios. The main reasons for this can be attributed to the following: (1) the existing MOT approaches would cause a significant rate of missed detection of the small targets in satellite videos; (2) it is difficult for the general MOT approaches to generate complete trajectories in complex satellite scenarios. To address these problems, a novel SV-MOT approach enhanced by high-resolution feature fusion and a two-step association method is proposed. In the high-resolution detection network, a high-resolution feature fusion module is designed to assist detection by maintaining small object features in forward propagation. By utilizing features of different resolutions, the performance of the detection of small targets in satellite videos is improved. Through high-quality detection and the use of an adaptive Kalman filter, the densely packed weak objects can be effectively tracked by associating almost every detection box instead of only the high-score ones. The comprehensive experimental results using the representative satellite video datasets (VISO) demonstrate that the proposed HRTracker with the state-of-the-art (SOTA) methods can achieve competitive performance in terms of the tracking accuracy and the frequency of ID conversion, obtaining a tracking accuracy score of 74.6% and an ID F1 score of 78.9%.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.