Remote Sensing and Landsystems in the Mountain Domain: FAIR Data Accessibility and Landform Identification in the Digital Earth

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Pub Date : 2024-09-09 DOI:10.3390/rs16173348
W. Brian Whalley
{"title":"Remote Sensing and Landsystems in the Mountain Domain: FAIR Data Accessibility and Landform Identification in the Digital Earth","authors":"W. Brian Whalley","doi":"10.3390/rs16173348","DOIUrl":null,"url":null,"abstract":"Satellite imagery has become a major source for identifying and mapping terrestrial and planetary landforms. However, interpretating landforms and their significance, especially in changing environments, may still be questionable. Consequently, ground truth to check training models, especially in mountainous areas, can be problematic. This paper outlines a decimal format, [dLL], for latitude and longitude geolocation that can be used for model interpretation and validation and in data sets. As data have positions in space and time, [dLL] defined points, as for images, can be associated with metadata as nodes. Together with vertices, metadata nodes help build ‘information surfaces’ as part of the Digital Earth. This paper examines aspects of the Critical Zone and data integration via the FAIR data principles, data that are; findable, accessible, interoperable and re-usable. Mapping and making inventories of rock glacier landforms are examined in the context of their geomorphic and environmental significance and the need for geolocated ground truth. Terrestrial examination of rock glaciers shows them to be predominantly glacier-derived landforms and not indicators of permafrost. Remote-sensing technologies used to track developing rock glacier surface features show them to be climatically melting glaciers beneath rock debris covers. Distinguishing between glaciers, debris-covered glaciers and rock glaciers over time is a challenge for new remote sensing satellites and technologies and shows the necessity for a common geolocation format to report many Earth surface features.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"11 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16173348","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite imagery has become a major source for identifying and mapping terrestrial and planetary landforms. However, interpretating landforms and their significance, especially in changing environments, may still be questionable. Consequently, ground truth to check training models, especially in mountainous areas, can be problematic. This paper outlines a decimal format, [dLL], for latitude and longitude geolocation that can be used for model interpretation and validation and in data sets. As data have positions in space and time, [dLL] defined points, as for images, can be associated with metadata as nodes. Together with vertices, metadata nodes help build ‘information surfaces’ as part of the Digital Earth. This paper examines aspects of the Critical Zone and data integration via the FAIR data principles, data that are; findable, accessible, interoperable and re-usable. Mapping and making inventories of rock glacier landforms are examined in the context of their geomorphic and environmental significance and the need for geolocated ground truth. Terrestrial examination of rock glaciers shows them to be predominantly glacier-derived landforms and not indicators of permafrost. Remote-sensing technologies used to track developing rock glacier surface features show them to be climatically melting glaciers beneath rock debris covers. Distinguishing between glaciers, debris-covered glaciers and rock glaciers over time is a challenge for new remote sensing satellites and technologies and shows the necessity for a common geolocation format to report many Earth surface features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
山区遥感与土地系统:数字地球中的 FAIR 数据可获取性和地貌识别
卫星图像已成为识别和绘制陆地和行星地貌的主要来源。然而,对地貌及其意义的解释,尤其是在不断变化的环境中,可能仍然存在疑问。因此,检查训练模型的地面实况(尤其是在山区)可能存在问题。本文概述了一种十进制经纬度地理定位格式 [dLL],可用于模型解释、验证和数据集。由于数据具有空间和时间位置,[dLL] 定义的点与图像一样,可以作为节点与元数据相关联。元数据节点与顶点一起,有助于构建数字地球的 "信息面"。本文通过 FAIR 数据原则,即可查找、可访问、可互操作和可重复使用的数据,探讨了临界区和数据集成的各个方面。本文从岩石冰川地貌的地貌和环境意义以及对地理定位地面实况的需求角度,对岩石冰川地貌的测绘和编目进行了研究。对岩石冰川的陆地考察表明,它们主要是冰川地貌,而不是永久冻土的指标。用于跟踪岩冰川地表特征的遥感技术表明,岩冰川是岩石碎屑覆盖下的气候融化冰川。随着时间的推移,如何区分冰川、碎屑覆盖的冰川和岩石冰川是新遥感卫星和技术面临的一项挑战,这也表明有必要采用通用的地理定位格式来报告许多地球表面特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery Development of a Background Filtering Algorithm to Improve the Accuracy of Determining Underground Cavities Using Multi-Channel Ground-Penetrating Radar and Deep Learning Enhancing Digital Twins with Human Movement Data: A Comparative Study of Lidar-Based Tracking Methods Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time Mini-Satellite Fucheng 1 SAR: Interferometry to Monitor Mining-Induced Subsidence and Comparative Analysis with Sentinel-1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1