Compost quality, earthworm activities and microbial communities in biochar-augmented vermicomposting of dewatered activated sludge: the role of biochar particle size
{"title":"Compost quality, earthworm activities and microbial communities in biochar-augmented vermicomposting of dewatered activated sludge: the role of biochar particle size","authors":"Wei Peng, Yue Wang, Guangyu Cui, Qiyong Xu, Hua Zhang, Pinjing He, Fan Lü","doi":"10.1007/s42773-024-00365-8","DOIUrl":null,"url":null,"abstract":"<p>Vermicomposting utilizes the synergistic effect of earthworms with microorganisms to accelerate the stabilization of organic matter in biowastes. Nevertheless, the exact mechanism behind the maturity of vermicompost and the growth of earthworms exposed to biochar of varying particle sizes remains unclear. This study presents an investigation of the effect of biochar particle size on earthworm (<i>Eisenia fetida</i>) survival, microbial diversity, and the quality of vermicompost products. To address these issues, pelletized dewatered sludge samples from a municipal sewage treatment plant were amended with pine-based biochar with particle sizes of 1–2 mm, 25–75 μm, 200 nm, and 60 nm as the substrate for vermicomposting. This study revealed that the addition of millimeter-scale biochar and micron-scale biochar significantly promoted the degradation of organic matter since the organic matter in the treatment with 1–2 mm biochar at the end of the vermicomposting experiment decreased by 12.6%, which was equivalent to a 1.9-fold increase compared with that of the control. Excessive nanopowdering of nanobiochar significantly affected the survival of earthworms and led to 24.4–33.3% cumulative mortality, while millimeter-scale (mm) biochar and micron-scale (μm) biochar achieved zero mortality. The findings of this study could be used for evaluating the potential impact of nanoscale biochar to earthworms and guiding biochar-augmented vermicomposting.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"2 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00365-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vermicomposting utilizes the synergistic effect of earthworms with microorganisms to accelerate the stabilization of organic matter in biowastes. Nevertheless, the exact mechanism behind the maturity of vermicompost and the growth of earthworms exposed to biochar of varying particle sizes remains unclear. This study presents an investigation of the effect of biochar particle size on earthworm (Eisenia fetida) survival, microbial diversity, and the quality of vermicompost products. To address these issues, pelletized dewatered sludge samples from a municipal sewage treatment plant were amended with pine-based biochar with particle sizes of 1–2 mm, 25–75 μm, 200 nm, and 60 nm as the substrate for vermicomposting. This study revealed that the addition of millimeter-scale biochar and micron-scale biochar significantly promoted the degradation of organic matter since the organic matter in the treatment with 1–2 mm biochar at the end of the vermicomposting experiment decreased by 12.6%, which was equivalent to a 1.9-fold increase compared with that of the control. Excessive nanopowdering of nanobiochar significantly affected the survival of earthworms and led to 24.4–33.3% cumulative mortality, while millimeter-scale (mm) biochar and micron-scale (μm) biochar achieved zero mortality. The findings of this study could be used for evaluating the potential impact of nanoscale biochar to earthworms and guiding biochar-augmented vermicomposting.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.