Novel Lagrange Multipliers-Driven Adaptive Offloading for Vehicular Edge Computing

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-09-11 DOI:10.1109/TC.2024.3457729
Liang Zhao;Tianyu Li;Guiying Meng;Ammar Hawbani;Geyong Min;Ahmed Y. Al-Dubai;Albert Y. Zomaya
{"title":"Novel Lagrange Multipliers-Driven Adaptive Offloading for Vehicular Edge Computing","authors":"Liang Zhao;Tianyu Li;Guiying Meng;Ammar Hawbani;Geyong Min;Ahmed Y. Al-Dubai;Albert Y. Zomaya","doi":"10.1109/TC.2024.3457729","DOIUrl":null,"url":null,"abstract":"Vehicular Edge Computing (VEC) is a transportation-specific version of Mobile Edge Computing (MEC) designed for vehicular scenarios. Task offloading allows vehicles to send computational tasks to nearby Roadside Units (RSUs) in order to reduce the computation cost for the overall system. However, the state-of-the-art solutions have not fully addressed the challenge of large-scale task result feedback with low delay, due to the extremely flexible network structure and complex traffic data. In this paper, we explore the joint task offloading and resource allocation problem with result feedback cost in the VEC. In particular, this study develops a VEC computing offloading scheme, namely, a Lagrange multipliers-based adaptive computing offloading with prediction model, considering multiple RSUs and vehicles within their coverage areas. First, the VEC network architecture employs GAN to establish a prediction model, utilizing the powerful predictive capabilities of GAN to forecast the maximum distance of future trajectories, thereby reducing the decision space for task offloading. Subsequently, we propose a real-time adaptive model and adjust the parameters in different scenarios to accommodate the dynamic characteristic of the VEC network. Finally, we apply Lagrange Multiplier-based Non-Uniform Genetic Algorithm (LM-NUGA) to make task offloading decision. Effectively, this algorithm provides reliable and efficient computing services. The results from simulation indicate that our proposed scheme efficiently reduces the computation cost for the whole VEC system. This paves the way for a new generation of disruptive and reliable offloading schemes.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 12","pages":"2868-2881"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10677502/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular Edge Computing (VEC) is a transportation-specific version of Mobile Edge Computing (MEC) designed for vehicular scenarios. Task offloading allows vehicles to send computational tasks to nearby Roadside Units (RSUs) in order to reduce the computation cost for the overall system. However, the state-of-the-art solutions have not fully addressed the challenge of large-scale task result feedback with low delay, due to the extremely flexible network structure and complex traffic data. In this paper, we explore the joint task offloading and resource allocation problem with result feedback cost in the VEC. In particular, this study develops a VEC computing offloading scheme, namely, a Lagrange multipliers-based adaptive computing offloading with prediction model, considering multiple RSUs and vehicles within their coverage areas. First, the VEC network architecture employs GAN to establish a prediction model, utilizing the powerful predictive capabilities of GAN to forecast the maximum distance of future trajectories, thereby reducing the decision space for task offloading. Subsequently, we propose a real-time adaptive model and adjust the parameters in different scenarios to accommodate the dynamic characteristic of the VEC network. Finally, we apply Lagrange Multiplier-based Non-Uniform Genetic Algorithm (LM-NUGA) to make task offloading decision. Effectively, this algorithm provides reliable and efficient computing services. The results from simulation indicate that our proposed scheme efficiently reduces the computation cost for the whole VEC system. This paves the way for a new generation of disruptive and reliable offloading schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向车载边缘计算的新型拉格朗日乘法器驱动自适应卸载
车载边缘计算(VEC)是移动边缘计算(MEC)的交通专用版本,专为车载场景设计。任务卸载允许车辆将计算任务发送到附近的路边单元(RSU),以降低整个系统的计算成本。然而,由于极其灵活的网络结构和复杂的交通数据,最先进的解决方案尚未完全解决低延迟大规模任务结果反馈的难题。在本文中,我们探讨了 VEC 中带有结果反馈成本的联合任务卸载和资源分配问题。具体而言,本研究开发了一种 VEC 计算卸载方案,即基于拉格朗日乘法器的自适应计算卸载预测模型,考虑了多个 RSU 及其覆盖区域内的车辆。首先,VEC 网络架构采用 GAN 建立预测模型,利用 GAN 强大的预测能力预测未来轨迹的最大距离,从而减少任务卸载的决策空间。随后,我们提出了实时自适应模型,并在不同场景下调整参数,以适应 VEC 网络的动态特性。最后,我们应用基于拉格朗日乘法器的非均匀遗传算法(LM-NUGA)来进行任务卸载决策。该算法能有效地提供可靠、高效的计算服务。仿真结果表明,我们提出的方案有效降低了整个 VEC 系统的计算成本。这为新一代颠覆性的可靠卸载方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
CUSPX: Efficient GPU Implementations of Post-Quantum Signature SPHINCS+ Chiplet-Gym: Optimizing Chiplet-based AI Accelerator Design with Reinforcement Learning FLALM: A Flexible Low Area-Latency Montgomery Modular Multiplication on FPGA Novel Lagrange Multipliers-Driven Adaptive Offloading for Vehicular Edge Computing Leveraging GPU in Homomorphic Encryption: Framework Design and Analysis of BFV Variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1