A Mutual-Influence-Aware Heuristic Method for Quantum Circuit Mapping

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-08-12 DOI:10.1109/TC.2024.3441825
Kui Ye;Shengxin Dai;Bing Guo;Yan Shen;Chuanjie Liu;Kejun Bi;Fei Chen;Yuchuan Hu;Mingjie Zhao
{"title":"A Mutual-Influence-Aware Heuristic Method for Quantum Circuit Mapping","authors":"Kui Ye;Shengxin Dai;Bing Guo;Yan Shen;Chuanjie Liu;Kejun Bi;Fei Chen;Yuchuan Hu;Mingjie Zhao","doi":"10.1109/TC.2024.3441825","DOIUrl":null,"url":null,"abstract":"Quantum circuit mapping (QCM) is a crucial preprocessing step for executing a logical circuit (LC) on noisy intermediate-scale quantum (NISQ) devices. Balancing the introduction of extra gates and the efficiency of preprocessing poses a significant challenge for the mapping process. To address this challenge, we propose the mutual-influence-aware (MIA) heuristic method by integrating an initial mapping search framework, an initial mapping generator, and a heuristic circuit mapper. Initially, the framework utilizes the generator to obtain a favorable starting point for the initial mapping search. With this starting point, the search process can efficiently discover a promising initial mapping within a few bidirectional iterations. The circuit mapper considers mutual influences of SWAP gates and is invoked once per iteration. Ultimately, the best result from all iterations is considered the QCM outcome. The experimental results on extensive benchmark circuits demonstrate that, compared to the iterated local search (ILS) method, which represents the current state-of-the-art, our MIA method introduces a similar number of extra gates while achieving nearly 95 times faster execution.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 12","pages":"2855-2867"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633881/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum circuit mapping (QCM) is a crucial preprocessing step for executing a logical circuit (LC) on noisy intermediate-scale quantum (NISQ) devices. Balancing the introduction of extra gates and the efficiency of preprocessing poses a significant challenge for the mapping process. To address this challenge, we propose the mutual-influence-aware (MIA) heuristic method by integrating an initial mapping search framework, an initial mapping generator, and a heuristic circuit mapper. Initially, the framework utilizes the generator to obtain a favorable starting point for the initial mapping search. With this starting point, the search process can efficiently discover a promising initial mapping within a few bidirectional iterations. The circuit mapper considers mutual influences of SWAP gates and is invoked once per iteration. Ultimately, the best result from all iterations is considered the QCM outcome. The experimental results on extensive benchmark circuits demonstrate that, compared to the iterated local search (ILS) method, which represents the current state-of-the-art, our MIA method introduces a similar number of extra gates while achieving nearly 95 times faster execution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子电路映射的相互影响启发法
量子电路映射(QCM)是在噪声中等规模量子(NISQ)器件上执行逻辑电路(LC)的关键预处理步骤。如何在引入额外门电路和提高预处理效率之间取得平衡,是映射过程面临的一项重大挑战。为了应对这一挑战,我们提出了相互影响感知(MIA)启发式方法,将初始映射搜索框架、初始映射生成器和启发式电路映射器整合在一起。最初,该框架利用生成器为初始映射搜索获得一个有利的起点。有了这个起点,搜索过程就能在几次双向迭代中高效地发现有希望的初始映射。电路映射器考虑了 SWAP 门的相互影响,每次迭代调用一次。最终,所有迭代的最佳结果被视为 QCM 结果。在大量基准电路上的实验结果表明,与代表当前最先进水平的迭代局部搜索(ILS)方法相比,我们的 MIA 方法引入的额外门数量相近,但执行速度却快了近 95 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
CUSPX: Efficient GPU Implementations of Post-Quantum Signature SPHINCS+ Chiplet-Gym: Optimizing Chiplet-based AI Accelerator Design with Reinforcement Learning FLALM: A Flexible Low Area-Latency Montgomery Modular Multiplication on FPGA Novel Lagrange Multipliers-Driven Adaptive Offloading for Vehicular Edge Computing Leveraging GPU in Homomorphic Encryption: Framework Design and Analysis of BFV Variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1