Development of an artificial neural network for a combined model of the uranium extraction process

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY Atomic Energy Pub Date : 2024-09-06 DOI:10.1007/s10512-024-01107-6
I. S. Nadezhdin, A. M. Emelyanov, S. N. Liventsov
{"title":"Development of an artificial neural network for a combined model of the uranium extraction process","authors":"I. S. Nadezhdin,&nbsp;A. M. Emelyanov,&nbsp;S. N. Liventsov","doi":"10.1007/s10512-024-01107-6","DOIUrl":null,"url":null,"abstract":"<div><p>Based on a conducted literature review, a training sample was compiled. The selected optimal parameters for training an artificial neural network included its structure, activation function, output layer transfer function, and the number of neurons in hidden layers. The results of calculations using the developed artificial neural network have an uncertainty of less than 1%, which confirms its suitability for creating a digital twin of a technological process.</p></div>","PeriodicalId":480,"journal":{"name":"Atomic Energy","volume":"135 5-6","pages":"235 - 241"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10512-024-01107-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on a conducted literature review, a training sample was compiled. The selected optimal parameters for training an artificial neural network included its structure, activation function, output layer transfer function, and the number of neurons in hidden layers. The results of calculations using the developed artificial neural network have an uncertainty of less than 1%, which confirms its suitability for creating a digital twin of a technological process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为铀萃取工艺组合模型开发人工神经网络
根据所进行的文献综述,编制了一个训练样本。为训练人工神经网络选定的最佳参数包括其结构、激活函数、输出层传递函数和隐藏层的神经元数量。使用所开发的人工神经网络进行计算的结果,其不确定性小于 1%,这证明该网络适用于创建技术过程的数字孪生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atomic Energy
Atomic Energy 工程技术-核科学技术
CiteScore
1.00
自引率
20.00%
发文量
100
审稿时长
4-8 weeks
期刊介绍: Atomic Energy publishes papers and review articles dealing with the latest developments in the peaceful uses of atomic energy. Topics include nuclear chemistry and physics, plasma physics, accelerator characteristics, reactor economics and engineering, applications of isotopes, and radiation monitoring and safety.
期刊最新文献
Development of a method for measuring the effective fraction of delayed neutrons using a 240Pu spontaneous fission source A method for design a linear heat rate ramp limit curve for thermal reactor fuel rods On the 60th anniversary of the first aperiodic pulsed nuclear reactor in Russia Feasibility study for industrial conditioning of spent ion-exchange resins by impregnation with a polymer binder Technical and economic aspects of a nuclear power engineering plant for hydrogen production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1