Ransomware Detection Using Machine Learning in the Linux Kernel

Adrian Brodzik, Tomasz Malec-Kruszyński, Wojciech Niewolski, Mikołaj Tkaczyk, Krzysztof Bocianiak, Sok-Yen Loui
{"title":"Ransomware Detection Using Machine Learning in the Linux Kernel","authors":"Adrian Brodzik, Tomasz Malec-Kruszyński, Wojciech Niewolski, Mikołaj Tkaczyk, Krzysztof Bocianiak, Sok-Yen Loui","doi":"arxiv-2409.06452","DOIUrl":null,"url":null,"abstract":"Linux-based cloud environments have become lucrative targets for ransomware\nattacks, employing various encryption schemes at unprecedented speeds.\nAddressing the urgency for real-time ransomware protection, we propose\nleveraging the extended Berkeley Packet Filter (eBPF) to collect system call\ninformation regarding active processes and infer about the data directly at the\nkernel level. In this study, we implement two Machine Learning (ML) models in\neBPF - a decision tree and a multilayer perceptron. Benchmarking latency and\naccuracy against their user space counterparts, our findings underscore the\nefficacy of this approach.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Linux-based cloud environments have become lucrative targets for ransomware attacks, employing various encryption schemes at unprecedented speeds. Addressing the urgency for real-time ransomware protection, we propose leveraging the extended Berkeley Packet Filter (eBPF) to collect system call information regarding active processes and infer about the data directly at the kernel level. In this study, we implement two Machine Learning (ML) models in eBPF - a decision tree and a multilayer perceptron. Benchmarking latency and accuracy against their user space counterparts, our findings underscore the efficacy of this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 Linux 内核中使用机器学习检测勒索软件
针对实时勒索软件保护的紧迫性,我们建议利用扩展的伯克利包过滤器(eBPF)来收集有关活动进程的系统调用信息,并直接在内核级别推断数据。在这项研究中,我们在 eBPF 中实施了两种机器学习(ML)模型--决策树和多层感知器。通过将延迟和准确性与用户空间对应模型进行比较,我们的研究结果证明了这种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PAD-FT: A Lightweight Defense for Backdoor Attacks via Data Purification and Fine-Tuning Artemis: Efficient Commit-and-Prove SNARKs for zkML A Survey-Based Quantitative Analysis of Stress Factors and Their Impacts Among Cybersecurity Professionals Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction Practical Investigation on the Distinguishability of Longa's Atomic Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1