Additive cosine margin for unsupervised softmax embedding

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Imaging Pub Date : 2024-08-01 DOI:10.1117/1.jei.33.4.040501
Dan Wang, Jianwei Yang, Cailing Wang
{"title":"Additive cosine margin for unsupervised softmax embedding","authors":"Dan Wang, Jianwei Yang, Cailing Wang","doi":"10.1117/1.jei.33.4.040501","DOIUrl":null,"url":null,"abstract":"Unsupervised embedding learning aims to learn highly discriminative features of images without using class labels. Existing instance-wise softmax embedding methods treat each instance as a distinct class and explore the underlying instance-to-instance visual similarity relationships. However, overfitting the instance features leads to insufficient discriminability and poor generalizability of networks. To tackle this issue, we introduce an instance-wise softmax embedding with cosine margin (SEwCM), which for the first time adds margin in the unsupervised instance softmax classification function from the cosine perspective. The cosine margin is used to separate the classification decision boundaries between instances. SEwCM explicitly optimizes the feature mapping of networks by maximizing the cosine similarity between instances, thus learning a highly discriminative model. Exhaustive experiments on three fine-grained image datasets demonstrate the effectiveness of our proposed method over existing methods.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"45 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.040501","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised embedding learning aims to learn highly discriminative features of images without using class labels. Existing instance-wise softmax embedding methods treat each instance as a distinct class and explore the underlying instance-to-instance visual similarity relationships. However, overfitting the instance features leads to insufficient discriminability and poor generalizability of networks. To tackle this issue, we introduce an instance-wise softmax embedding with cosine margin (SEwCM), which for the first time adds margin in the unsupervised instance softmax classification function from the cosine perspective. The cosine margin is used to separate the classification decision boundaries between instances. SEwCM explicitly optimizes the feature mapping of networks by maximizing the cosine similarity between instances, thus learning a highly discriminative model. Exhaustive experiments on three fine-grained image datasets demonstrate the effectiveness of our proposed method over existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无监督软最大嵌入的加余弦余量
无监督嵌入学习的目的是在不使用类别标签的情况下,学习图像的高区分度特征。现有的实例明智软最大嵌入方法将每个实例视为一个不同的类别,并探索实例与实例之间潜在的视觉相似性关系。然而,过度拟合实例特征会导致网络的可区分性不足和泛化能力差。为了解决这个问题,我们引入了带余弦余量的实例软最大嵌入(SEwCM),首次从余弦角度在无监督实例软最大分类函数中增加了余量。余弦余量用于区分实例之间的分类决策边界。SEwCM 通过最大化实例之间的余弦相似度,明确优化了网络的特征映射,从而学习出一个高辨别度的模型。在三个细粒度图像数据集上进行的详尽实验证明了我们提出的方法比现有方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
期刊最新文献
DTSIDNet: a discrete wavelet and transformer based network for single image denoising Multi-head attention with reinforcement learning for supervised video summarization End-to-end multitasking network for smart container product positioning and segmentation Generative object separation in X-ray images Toward effective local dimming-driven liquid crystal displays: a deep curve estimation–based adaptive compensation solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1