Maddison Howlett, Helen J. Mayfield, Brady McPherson, Lisa Rigby, Robert Thomsen, Steven A. Williams, Nils Pilotte, Shannon M. Hedtke, Patricia M. Graves, Therese Kearns, Take Naseri, Sarah Sheridan, Angus McLure, Colleen L. Lau
{"title":"Molecular xenomonitoring as an indicator of microfilaraemia prevalence for lymphatic filariasis in Samoa in 2019","authors":"Maddison Howlett, Helen J. Mayfield, Brady McPherson, Lisa Rigby, Robert Thomsen, Steven A. Williams, Nils Pilotte, Shannon M. Hedtke, Patricia M. Graves, Therese Kearns, Take Naseri, Sarah Sheridan, Angus McLure, Colleen L. Lau","doi":"10.1186/s13071-024-06463-7","DOIUrl":null,"url":null,"abstract":"Lymphatic filariasis (LF) is a globally significant, vector-borne, neglected tropical disease that can result in severe morbidity and disability. As the World Health Organization (WHO) Global Programme to Eliminate Lymphatic Filariasis makes progress towards LF elimination, there is greater need to develop sensitive strategies for post-intervention surveillance. Molecular xenomonitoring (MX), the detection of pathogen DNA in vectors, may provide a sensitive complement to traditional human-based surveillance techniques, including detection of circulating filarial antigen and microfilaraemia (Mf). This study aims to explore the relationship between human Mf prevalence and the prevalence of polymerase chain reaction (PCR)-positive mosquitoes using MX. This study compared Mf and MX results from a 2019 community-based survey conducted in 35 primary sampling units (PSUs) in Samoa. This study also investigated concordance between presence and absence of PCR-positive mosquitoes and Mf-positive participants at the PSU level, and calculated sensitivity and negative predictive values for each indicator using presence of any Mf-positive infection in humans or PCR-positive mosquitoes as a reference. Correlation between prevalence of filarial DNA in mosquitoes and Mf in humans was estimated at the PSU and household/trap level using mixed-effect Bayesian multilevel regression analysis. Mf-positive individuals were identified in less than half of PSUs in which PCR-positive mosquito pools were present (13 of 28 PSUs). Prevalence of PCR-positive mosquitoes (each species separately) was positively correlated with Mf prevalence in humans at the PSU level. Analysed at the species level, only Aedes polynesiensis demonstrated strong evidence of positive correlation (r) with human Mf prevalence at both PSU (r: 0.5, 95% CrI 0.1–0.8) and trap/household levels (r: 0.6, 95% CrI 0.2–0.9). Findings from this study demonstrate that MX can be a sensitive surveillance method for identifying residual infection in low Mf prevalence settings. MX identified more locations with signals of transmission than Mf-testing. Strong correlation between estimated PCR-positive mosquitoes in the primary vector species and Mf in humans at small spatial scales demonstrates the utility of MX as an indicator for LF prevalence in Samoa and similar settings. Further investigation is needed to develop MX guidelines to strengthen the ability of MX to inform operational decisions. ","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"2 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06463-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lymphatic filariasis (LF) is a globally significant, vector-borne, neglected tropical disease that can result in severe morbidity and disability. As the World Health Organization (WHO) Global Programme to Eliminate Lymphatic Filariasis makes progress towards LF elimination, there is greater need to develop sensitive strategies for post-intervention surveillance. Molecular xenomonitoring (MX), the detection of pathogen DNA in vectors, may provide a sensitive complement to traditional human-based surveillance techniques, including detection of circulating filarial antigen and microfilaraemia (Mf). This study aims to explore the relationship between human Mf prevalence and the prevalence of polymerase chain reaction (PCR)-positive mosquitoes using MX. This study compared Mf and MX results from a 2019 community-based survey conducted in 35 primary sampling units (PSUs) in Samoa. This study also investigated concordance between presence and absence of PCR-positive mosquitoes and Mf-positive participants at the PSU level, and calculated sensitivity and negative predictive values for each indicator using presence of any Mf-positive infection in humans or PCR-positive mosquitoes as a reference. Correlation between prevalence of filarial DNA in mosquitoes and Mf in humans was estimated at the PSU and household/trap level using mixed-effect Bayesian multilevel regression analysis. Mf-positive individuals were identified in less than half of PSUs in which PCR-positive mosquito pools were present (13 of 28 PSUs). Prevalence of PCR-positive mosquitoes (each species separately) was positively correlated with Mf prevalence in humans at the PSU level. Analysed at the species level, only Aedes polynesiensis demonstrated strong evidence of positive correlation (r) with human Mf prevalence at both PSU (r: 0.5, 95% CrI 0.1–0.8) and trap/household levels (r: 0.6, 95% CrI 0.2–0.9). Findings from this study demonstrate that MX can be a sensitive surveillance method for identifying residual infection in low Mf prevalence settings. MX identified more locations with signals of transmission than Mf-testing. Strong correlation between estimated PCR-positive mosquitoes in the primary vector species and Mf in humans at small spatial scales demonstrates the utility of MX as an indicator for LF prevalence in Samoa and similar settings. Further investigation is needed to develop MX guidelines to strengthen the ability of MX to inform operational decisions.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.