{"title":"Improving the Magnetocaloric Effect of a Composite Based on Pr0.8Sr0.2MnO3 Compound","authors":"A. Ben Jazia Kharrat, W. Boujelben","doi":"10.1007/s10909-024-03199-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this research work, samples of Pr<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub> were prepared using two methods: the conventional high-temperature ceramic method (sample R1) and the sol–gel method (sample R2) in order to form a composite. The Curie temperatures were found to be 161 K and 210 K for R1 and R2, respectively. We conducted a theoretical investigation of the magnetic and magnetocaloric (MC) properties of a composite constructed from R1 and R2 compounds to enhance the MC effect.The results suggest that our composite, with a Curie temperature evaluated at 190 K, could be a potential candidate for magnetic refrigeration. Refined values of the critical exponents <i>β</i>, <i>γ</i>, and <i>δ</i>, determined from the modified Arrott plots and the Kouvel–Fisher method, indicate that the behavior of the composite compound is consistent with the 3D Heisenberg model for <i>T</i> ≤ <i>T</i><sub>C</sub> and with the mean-field model for <i>T</i> > <i>T</i><sub>C</sub>.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03199-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this research work, samples of Pr0.8Sr0.2MnO3 were prepared using two methods: the conventional high-temperature ceramic method (sample R1) and the sol–gel method (sample R2) in order to form a composite. The Curie temperatures were found to be 161 K and 210 K for R1 and R2, respectively. We conducted a theoretical investigation of the magnetic and magnetocaloric (MC) properties of a composite constructed from R1 and R2 compounds to enhance the MC effect.The results suggest that our composite, with a Curie temperature evaluated at 190 K, could be a potential candidate for magnetic refrigeration. Refined values of the critical exponents β, γ, and δ, determined from the modified Arrott plots and the Kouvel–Fisher method, indicate that the behavior of the composite compound is consistent with the 3D Heisenberg model for T ≤ TC and with the mean-field model for T > TC.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.