Joint coordinate attention mechanism and instance normalization for COVID online comments text classification

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-08-19 DOI:10.7717/peerj-cs.2240
Rong Zhu, Hua-Hui Gao, Yong Wang
{"title":"Joint coordinate attention mechanism and instance normalization for COVID online comments text classification","authors":"Rong Zhu, Hua-Hui Gao, Yong Wang","doi":"10.7717/peerj-cs.2240","DOIUrl":null,"url":null,"abstract":"Background The majority of extant methodologies for text classification prioritize the extraction of feature representations from texts with high degrees of distinction, a process that may result in computational inefficiencies. To address this limitation, the current study proposes a novel approach by directly leveraging label information to construct text representations. This integration aims to optimize the use of label data alongside textual content. Methods The methodology initiated with separate pre-processing of texts and labels, followed by encoding through a projection layer. This research then utilized a conventional self-attention model enhanced by instance normalization (IN) and Gaussian Error Linear Unit (GELU) functions to assess emotional valences in review texts. An advanced self-attention mechanism was further developed to enable the efficient integration of text and label information. In the final stage, an adaptive label encoder was employed to extract relevant label information from the combined text-label data efficiently. Results Empirical evaluations demonstrate that the proposed model achieves a significant improvement in classification performance, outperforming existing methodologies. This enhancement is quantitatively evidenced by its superior micro-F1 score, indicating the efficacy of integrating label information into text classification processes. This suggests that the model not only addresses computational inefficiencies but also enhances the accuracy of text classification.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"8 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2240","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background The majority of extant methodologies for text classification prioritize the extraction of feature representations from texts with high degrees of distinction, a process that may result in computational inefficiencies. To address this limitation, the current study proposes a novel approach by directly leveraging label information to construct text representations. This integration aims to optimize the use of label data alongside textual content. Methods The methodology initiated with separate pre-processing of texts and labels, followed by encoding through a projection layer. This research then utilized a conventional self-attention model enhanced by instance normalization (IN) and Gaussian Error Linear Unit (GELU) functions to assess emotional valences in review texts. An advanced self-attention mechanism was further developed to enable the efficient integration of text and label information. In the final stage, an adaptive label encoder was employed to extract relevant label information from the combined text-label data efficiently. Results Empirical evaluations demonstrate that the proposed model achieves a significant improvement in classification performance, outperforming existing methodologies. This enhancement is quantitatively evidenced by its superior micro-F1 score, indicating the efficacy of integrating label information into text classification processes. This suggests that the model not only addresses computational inefficiencies but also enhances the accuracy of text classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 COVID 在线评论文本分类的联合协调关注机制和实例规范化
背景 大多数现有的文本分类方法都优先考虑从具有高度区分度的文本中提取特征表征,这一过程可能会导致计算效率低下。为了解决这一局限性,本研究提出了一种新方法,即直接利用标签信息来构建文本表征。这种整合旨在优化标签数据与文本内容的使用。方法 该方法首先对文本和标签分别进行预处理,然后通过投影层进行编码。然后,本研究利用实例归一化(IN)和高斯误差线性单元(GELU)函数增强的传统自我关注模型来评估评论文本中的情感价位。研究还进一步开发了先进的自我注意机制,以实现文本和标签信息的有效整合。在最后阶段,采用自适应标签编码器从文本-标签组合数据中有效提取相关标签信息。结果 经验评估表明,所提出的模型显著提高了分类性能,优于现有方法。其卓越的 micro-F1 分数从数量上证明了这一改进,表明将标签信息整合到文本分类过程中是有效的。这表明,该模型不仅解决了计算效率低下的问题,还提高了文本分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
A model integrating attention mechanism and generative adversarial network for image style transfer. Detecting rumors in social media using emotion based deep learning approach. Harnessing AI and analytics to enhance cybersecurity and privacy for collective intelligence systems. Improving synthetic media generation and detection using generative adversarial networks. Intelligent accounting optimization method based on meta-heuristic algorithm and CNN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1