Comparative analysis of BERT and FastText representations on crowdfunding campaign success prediction

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-09-11 DOI:10.7717/peerj-cs.2316
Hakan Gunduz
{"title":"Comparative analysis of BERT and FastText representations on crowdfunding campaign success prediction","authors":"Hakan Gunduz","doi":"10.7717/peerj-cs.2316","DOIUrl":null,"url":null,"abstract":"Crowdfunding has become a popular financing method, attracting investors, businesses, and entrepreneurs. However, many campaigns fail to secure funding, making it crucial to reduce participation risks using artificial intelligence (AI). This study investigates the effectiveness of advanced AI techniques in predicting the success of crowdfunding campaigns on Kickstarter by analyzing campaign blurbs. We compare the performance of two widely used text representation models, bidirectional encoder representations from transformers (BERT) and FastText, in conjunction with long-short term memory (LSTM) and gradient boosting machine (GBM) classifiers. Our analysis involves preprocessing campaign blurbs, extracting features using BERT and FastText, and evaluating the predictive performance of these features with LSTM and GBM models. All experimental results show that BERT representations significantly outperform FastText, with the highest accuracy of 0.745 achieved using a fine-tuned BERT model combined with LSTM. These findings highlight the importance of using deep contextual embeddings and the benefits of fine-tuning pre-trained models for domain-specific applications. The results are benchmarked against existing methods, demonstrating the superiority of our approach. This study provides valuable insights for improving predictive models in the crowdfunding domain, offering practical implications for campaign creators and investors.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"35 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2316","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Crowdfunding has become a popular financing method, attracting investors, businesses, and entrepreneurs. However, many campaigns fail to secure funding, making it crucial to reduce participation risks using artificial intelligence (AI). This study investigates the effectiveness of advanced AI techniques in predicting the success of crowdfunding campaigns on Kickstarter by analyzing campaign blurbs. We compare the performance of two widely used text representation models, bidirectional encoder representations from transformers (BERT) and FastText, in conjunction with long-short term memory (LSTM) and gradient boosting machine (GBM) classifiers. Our analysis involves preprocessing campaign blurbs, extracting features using BERT and FastText, and evaluating the predictive performance of these features with LSTM and GBM models. All experimental results show that BERT representations significantly outperform FastText, with the highest accuracy of 0.745 achieved using a fine-tuned BERT model combined with LSTM. These findings highlight the importance of using deep contextual embeddings and the benefits of fine-tuning pre-trained models for domain-specific applications. The results are benchmarked against existing methods, demonstrating the superiority of our approach. This study provides valuable insights for improving predictive models in the crowdfunding domain, offering practical implications for campaign creators and investors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BERT 和 FastText 表示法在众筹活动成功预测方面的比较分析
众筹已成为一种流行的融资方式,吸引着投资者、企业和创业者。然而,许多众筹活动未能获得资金,因此利用人工智能(AI)降低参与风险至关重要。本研究通过分析 Kickstarter 上的众筹活动简介,研究了先进的人工智能技术在预测众筹活动成功方面的有效性。我们比较了两种广泛使用的文本表示模型--转换器双向编码器表示(BERT)和 FastText,以及长短期记忆(LSTM)和梯度提升机(GBM)分类器的性能。我们的分析包括预处理活动短语,使用 BERT 和 FastText 提取特征,以及使用 LSTM 和 GBM 模型评估这些特征的预测性能。所有实验结果表明,BERT 表示法明显优于 FastText,其中使用微调的 BERT 模型结合 LSTM 实现的准确率最高,达到 0.745。这些发现凸显了使用深度上下文嵌入的重要性,以及针对特定领域应用微调预训练模型的益处。研究结果以现有方法为基准,证明了我们的方法的优越性。这项研究为改进众筹领域的预测模型提供了宝贵的见解,对活动创建者和投资者具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
A model integrating attention mechanism and generative adversarial network for image style transfer. Detecting rumors in social media using emotion based deep learning approach. Harnessing AI and analytics to enhance cybersecurity and privacy for collective intelligence systems. Improving synthetic media generation and detection using generative adversarial networks. Intelligent accounting optimization method based on meta-heuristic algorithm and CNN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1