{"title":"Increasing the explainability and success in classification: many-objective classification rule mining based on chaos integrated SPEA2","authors":"Suna Yildirim, Bilal Alatas","doi":"10.7717/peerj-cs.2307","DOIUrl":null,"url":null,"abstract":"Classification rule mining represents a significant field of machine learning, facilitating informed decision-making through the extraction of meaningful rules from complex data. Many classification methods cannot simultaneously optimize both explainability and different performance metrics at the same time. Metaheuristic optimization-based solutions, inspired by natural phenomena, offer a potential paradigm shift in this field, enabling the development of interpretable and scalable classifiers. In contrast to classical methods, such rule extraction-based solutions are capable of classification by taking multiple purposes into consideration simultaneously. To the best of our knowledge, although there are limited studies on metaheuristic based classification, there is not any method that optimize more than three objectives while increasing the explainability and interpretability for classification task. In this study, data sets are treated as the search space and metaheuristics as the many-objective rule discovery strategy and study proposes a metaheuristic many-objective optimization-based rule extraction approach for the first time in the literature. Chaos theory is also integrated to the optimization method for performance increment and the proposed chaotic rule-based SPEA2 algorithm enables the simultaneous optimization of four different success metrics and automatic rule extraction. Another distinctive feature of the proposed algorithm is that, in contrast to classical random search methods, it can mitigate issues such as correlation and poor uniformity between candidate solutions through the use of a chaotic random search mechanism in the exploration and exploitation phases. The efficacy of the proposed method is evaluated using three distinct data sets, and its performance is demonstrated in comparison with other classical machine learning results.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"12 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2307","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Classification rule mining represents a significant field of machine learning, facilitating informed decision-making through the extraction of meaningful rules from complex data. Many classification methods cannot simultaneously optimize both explainability and different performance metrics at the same time. Metaheuristic optimization-based solutions, inspired by natural phenomena, offer a potential paradigm shift in this field, enabling the development of interpretable and scalable classifiers. In contrast to classical methods, such rule extraction-based solutions are capable of classification by taking multiple purposes into consideration simultaneously. To the best of our knowledge, although there are limited studies on metaheuristic based classification, there is not any method that optimize more than three objectives while increasing the explainability and interpretability for classification task. In this study, data sets are treated as the search space and metaheuristics as the many-objective rule discovery strategy and study proposes a metaheuristic many-objective optimization-based rule extraction approach for the first time in the literature. Chaos theory is also integrated to the optimization method for performance increment and the proposed chaotic rule-based SPEA2 algorithm enables the simultaneous optimization of four different success metrics and automatic rule extraction. Another distinctive feature of the proposed algorithm is that, in contrast to classical random search methods, it can mitigate issues such as correlation and poor uniformity between candidate solutions through the use of a chaotic random search mechanism in the exploration and exploitation phases. The efficacy of the proposed method is evaluated using three distinct data sets, and its performance is demonstrated in comparison with other classical machine learning results.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.