{"title":"Frequency distribution-aware network based on discrete cosine transformation (DCT) for remote sensing image super resolution","authors":"Yunsong Li, Debao Yuan","doi":"10.7717/peerj-cs.2255","DOIUrl":null,"url":null,"abstract":"Single-image super-resolution technology based on deep learning is widely used in remote sensing. The non-local feature reflects the correlation information between different regions. Most neural networks extract various non-local information of images in the spatial domain but ignore the similarity characteristics of frequency distribution, which limits the performance of the algorithm. To solve this problem, we propose a frequency distribution aware network based on discrete cosine transformation for remote sensing image super-resolution. This network first proposes a frequency-aware module. This module can effectively extract the similarity characteristics of the frequency distribution between different regions by rearranging the frequency feature matrix of the image. A global frequency feature fusion module is also proposed. It can extract the non-local information of feature maps at different scales in the frequency domain with little computational cost. The experiments were on two commonly-used remote sensing datasets. The experimental results show that the proposed algorithm can effectively complete image reconstruction and performs better than some advanced super-resolution algorithms. The code is available at https://github.com/Liyszepc/FDANet.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"3 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2255","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Single-image super-resolution technology based on deep learning is widely used in remote sensing. The non-local feature reflects the correlation information between different regions. Most neural networks extract various non-local information of images in the spatial domain but ignore the similarity characteristics of frequency distribution, which limits the performance of the algorithm. To solve this problem, we propose a frequency distribution aware network based on discrete cosine transformation for remote sensing image super-resolution. This network first proposes a frequency-aware module. This module can effectively extract the similarity characteristics of the frequency distribution between different regions by rearranging the frequency feature matrix of the image. A global frequency feature fusion module is also proposed. It can extract the non-local information of feature maps at different scales in the frequency domain with little computational cost. The experiments were on two commonly-used remote sensing datasets. The experimental results show that the proposed algorithm can effectively complete image reconstruction and performs better than some advanced super-resolution algorithms. The code is available at https://github.com/Liyszepc/FDANet.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.