Comprehensive analysis of clustering algorithms: exploring limitations and innovative solutions

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-08-29 DOI:10.7717/peerj-cs.2286
Aasim Ayaz Wani
{"title":"Comprehensive analysis of clustering algorithms: exploring limitations and innovative solutions","authors":"Aasim Ayaz Wani","doi":"10.7717/peerj-cs.2286","DOIUrl":null,"url":null,"abstract":"This survey rigorously explores contemporary clustering algorithms within the machine learning paradigm, focusing on five primary methodologies: centroid-based, hierarchical, density-based, distribution-based, and graph-based clustering. Through the lens of recent innovations such as deep embedded clustering and spectral clustering, we analyze the strengths, limitations, and the breadth of application domains—ranging from bioinformatics to social network analysis. Notably, the survey introduces novel contributions by integrating clustering techniques with dimensionality reduction and proposing advanced ensemble methods to enhance stability and accuracy across varied data structures. This work uniquely synthesizes the latest advancements and offers new perspectives on overcoming traditional challenges like scalability and noise sensitivity, thus providing a comprehensive roadmap for future research and practical applications in data-intensive environments.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"3 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2286","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This survey rigorously explores contemporary clustering algorithms within the machine learning paradigm, focusing on five primary methodologies: centroid-based, hierarchical, density-based, distribution-based, and graph-based clustering. Through the lens of recent innovations such as deep embedded clustering and spectral clustering, we analyze the strengths, limitations, and the breadth of application domains—ranging from bioinformatics to social network analysis. Notably, the survey introduces novel contributions by integrating clustering techniques with dimensionality reduction and proposing advanced ensemble methods to enhance stability and accuracy across varied data structures. This work uniquely synthesizes the latest advancements and offers new perspectives on overcoming traditional challenges like scalability and noise sensitivity, thus providing a comprehensive roadmap for future research and practical applications in data-intensive environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全面分析聚类算法:探索局限性和创新解决方案
本调查报告严格探讨了机器学习范式中的当代聚类算法,重点关注五种主要方法:基于中心点的聚类、分层聚类、基于密度的聚类、基于分布的聚类和基于图的聚类。通过深度嵌入式聚类和光谱聚类等最新创新的视角,我们分析了从生物信息学到社交网络分析等应用领域的优势、局限性和广度。值得注意的是,该研究通过将聚类技术与降维技术相结合,并提出先进的集合方法来提高不同数据结构的稳定性和准确性,从而做出了新的贡献。这项工作独特地综合了最新进展,为克服可扩展性和噪声敏感性等传统挑战提供了新视角,从而为数据密集型环境中的未来研究和实际应用提供了全面的路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
A model integrating attention mechanism and generative adversarial network for image style transfer. Detecting rumors in social media using emotion based deep learning approach. Harnessing AI and analytics to enhance cybersecurity and privacy for collective intelligence systems. Improving synthetic media generation and detection using generative adversarial networks. Intelligent accounting optimization method based on meta-heuristic algorithm and CNN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1