BERT4Cache: a bidirectional encoder representations for data prefetching in cache

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-08-29 DOI:10.7717/peerj-cs.2258
Jing Shang, Zhihui Wu, Zhiwen Xiao, Yifei Zhang, Jibin Wang
{"title":"BERT4Cache: a bidirectional encoder representations for data prefetching in cache","authors":"Jing Shang, Zhihui Wu, Zhiwen Xiao, Yifei Zhang, Jibin Wang","doi":"10.7717/peerj-cs.2258","DOIUrl":null,"url":null,"abstract":"Cache plays a crucial role in improving system response time, alleviating server pressure, and achieving load balancing in various aspects of modern information systems. The data prefetch and cache replacement algorithms are significant factors influencing caching performance. Due to the inability to learn user interests and preferences accurately, existing rule-based and data mining caching algorithms fail to capture the unique features of the user access behavior sequence, resulting in low cache hit rates. In this article, we introduce BERT4Cache, an end-to-end bidirectional Transformer model with attention for data prefetch in cache. BERT4Cache enhances cache hit rates and ultimately improves cache performance by predicting the user’s imminent future requested objects and prefetching them into the cache. In our thorough experiments, we show that BERT4Cache achieves superior results in hit rates and other metrics compared to generic reactive and advanced proactive caching strategies.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"12 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2258","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cache plays a crucial role in improving system response time, alleviating server pressure, and achieving load balancing in various aspects of modern information systems. The data prefetch and cache replacement algorithms are significant factors influencing caching performance. Due to the inability to learn user interests and preferences accurately, existing rule-based and data mining caching algorithms fail to capture the unique features of the user access behavior sequence, resulting in low cache hit rates. In this article, we introduce BERT4Cache, an end-to-end bidirectional Transformer model with attention for data prefetch in cache. BERT4Cache enhances cache hit rates and ultimately improves cache performance by predicting the user’s imminent future requested objects and prefetching them into the cache. In our thorough experiments, we show that BERT4Cache achieves superior results in hit rates and other metrics compared to generic reactive and advanced proactive caching strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BERT4Cache:用于缓存中数据预取的双向编码器表示法
在现代信息系统的各个方面,缓存在改善系统响应时间、减轻服务器压力和实现负载平衡方面发挥着至关重要的作用。数据预取和缓存替换算法是影响缓存性能的重要因素。由于无法准确学习用户的兴趣和偏好,现有的基于规则和数据挖掘的缓存算法无法捕捉用户访问行为序列的独特特征,导致缓存命中率较低。在本文中,我们介绍了 BERT4Cache,这是一种端到端双向 Transformer 模型,关注缓存中的数据预取。BERT4Cache 通过预测用户未来即将请求的对象并将其预取到缓存中,从而提高缓存命中率并最终改善缓存性能。通过全面的实验,我们发现 BERT4Cache 在命中率和其他指标上都优于一般的反应式缓存策略和先进的主动式缓存策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
A model integrating attention mechanism and generative adversarial network for image style transfer. Detecting rumors in social media using emotion based deep learning approach. Harnessing AI and analytics to enhance cybersecurity and privacy for collective intelligence systems. Improving synthetic media generation and detection using generative adversarial networks. Intelligent accounting optimization method based on meta-heuristic algorithm and CNN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1