{"title":"A feature-enhanced knowledge graph neural network for machine learning method recommendation","authors":"Xin Zhang, Junjie Guo","doi":"10.7717/peerj-cs.2284","DOIUrl":null,"url":null,"abstract":"Large amounts of machine learning methods with condensed names bring great challenges for researchers to select a suitable approach for a target dataset in the area of academic research. Although the graph neural networks based on the knowledge graph have been proven helpful in recommending a machine learning method for a given dataset, the issues of inadequate entity representation and over-smoothing of embeddings still need to be addressed. This article proposes a recommendation framework that integrates the feature-enhanced graph neural network and an anti-smoothing aggregation network. In the proposed framework, in addition to utilizing the textual description information of the target entities, each node is enhanced through its neighborhood information before participating in the higher-order propagation process. In addition, an anti-smoothing aggregation network is designed to reduce the influence of central nodes in each information aggregation by an exponential decay function. Extensive experiments on the public dataset demonstrate that the proposed approach exhibits substantial advantages over the strong baselines in recommendation tasks.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"24 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2284","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Large amounts of machine learning methods with condensed names bring great challenges for researchers to select a suitable approach for a target dataset in the area of academic research. Although the graph neural networks based on the knowledge graph have been proven helpful in recommending a machine learning method for a given dataset, the issues of inadequate entity representation and over-smoothing of embeddings still need to be addressed. This article proposes a recommendation framework that integrates the feature-enhanced graph neural network and an anti-smoothing aggregation network. In the proposed framework, in addition to utilizing the textual description information of the target entities, each node is enhanced through its neighborhood information before participating in the higher-order propagation process. In addition, an anti-smoothing aggregation network is designed to reduce the influence of central nodes in each information aggregation by an exponential decay function. Extensive experiments on the public dataset demonstrate that the proposed approach exhibits substantial advantages over the strong baselines in recommendation tasks.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.