Optimizing agricultural data security: harnessing IoT and AI with Latency Aware Accuracy Index (LAAI)

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-08-28 DOI:10.7717/peerj-cs.2276
Omar Bin Samin, Nasir Ahmed Abdulkhader Algeelani, Ammar Bathich, Maryam Omar, Musadaq Mansoor, Amir Khan
{"title":"Optimizing agricultural data security: harnessing IoT and AI with Latency Aware Accuracy Index (LAAI)","authors":"Omar Bin Samin, Nasir Ahmed Abdulkhader Algeelani, Ammar Bathich, Maryam Omar, Musadaq Mansoor, Amir Khan","doi":"10.7717/peerj-cs.2276","DOIUrl":null,"url":null,"abstract":"The integration of Internet of Things (IoT) and artificial intelligence (AI) technologies into modern agriculture has profound implications on data collection, management, and decision-making processes. However, ensuring the security of agricultural data has consistently posed a significant challenge. This study presents a novel evaluation metric titled Latency Aware Accuracy Index (LAAI) for the purpose of optimizing data security in the agricultural sector. The LAAI uses the combined capacities of the IoT and AI in addition to the latency aspect. The use of IoT tools for data collection and AI algorithms for analysis makes farming operation more productive. The LAAI metric is a more holistic way to determine data accuracy while considering latency limitations. This ensures that farmers and other end-users are fed trustworthy information in a timely manner. This unified measure not only makes the data more secure but gives farmers the information that helps them to make smart decisions and, thus, drives healthier farming and food security.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"35 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2276","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Internet of Things (IoT) and artificial intelligence (AI) technologies into modern agriculture has profound implications on data collection, management, and decision-making processes. However, ensuring the security of agricultural data has consistently posed a significant challenge. This study presents a novel evaluation metric titled Latency Aware Accuracy Index (LAAI) for the purpose of optimizing data security in the agricultural sector. The LAAI uses the combined capacities of the IoT and AI in addition to the latency aspect. The use of IoT tools for data collection and AI algorithms for analysis makes farming operation more productive. The LAAI metric is a more holistic way to determine data accuracy while considering latency limitations. This ensures that farmers and other end-users are fed trustworthy information in a timely manner. This unified measure not only makes the data more secure but gives farmers the information that helps them to make smart decisions and, thus, drives healthier farming and food security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化农业数据安全:利用延迟感知准确度指数 (LAAI) 利用物联网和人工智能
将物联网(IoT)和人工智能(AI)技术融入现代农业,对数据收集、管理和决策过程产生了深远影响。然而,如何确保农业数据的安全性一直是一个重大挑战。本研究提出了一种名为 "延迟感知准确度指数(LAI)"的新型评估指标,用于优化农业领域的数据安全。除了延迟方面,LAAI 还利用了物联网和人工智能的综合能力。使用物联网工具收集数据和使用人工智能算法进行分析可提高农业生产效率。LAAI 指标是在考虑延迟限制的同时确定数据准确性的一种更全面的方法。这可确保农民和其他终端用户及时获得可信的信息。这种统一的衡量标准不仅使数据更加安全,还能为农民提供信息,帮助他们做出明智的决策,从而推动更健康的农业生产和粮食安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
A model integrating attention mechanism and generative adversarial network for image style transfer. Detecting rumors in social media using emotion based deep learning approach. Harnessing AI and analytics to enhance cybersecurity and privacy for collective intelligence systems. Improving synthetic media generation and detection using generative adversarial networks. Intelligent accounting optimization method based on meta-heuristic algorithm and CNN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1