Guoqing Jiang, Saiya Li, Ziyu Huang, Guorong Cai, Jinhe Su
{"title":"TSFF: a two-stage fusion framework for 3D object detection","authors":"Guoqing Jiang, Saiya Li, Ziyu Huang, Guorong Cai, Jinhe Su","doi":"10.7717/peerj-cs.2260","DOIUrl":null,"url":null,"abstract":"Point clouds are highly regarded in the field of 3D object detection for their superior geometric properties and versatility. However, object occlusion and defects in scanning equipment frequently result in sparse and missing data within point clouds, adversely affecting the final prediction. Recognizing the synergistic potential between the rich semantic information present in images and the geometric data in point clouds for scene representation, we introduce a two-stage fusion framework (TSFF) for 3D object detection. To address the issue of corrupted geometric information in point clouds caused by object occlusion, we augment point features with image features, thereby enhancing the reference factor of the point cloud during the voting bias phase. Furthermore, we implement a constrained fusion module to selectively sample voting points using a 2D bounding box, integrating valuable image features while reducing the impact of background points in sparse scenes. Our methodology was evaluated on the SUNRGB-D dataset, where it achieved a 3.6 mean average percent (mAP) improvement in the mAP@0.25 evaluation criterion over the baseline. In comparison to other great 3D object detection methods, our method had excellent performance in the detection of some objects.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2260","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Point clouds are highly regarded in the field of 3D object detection for their superior geometric properties and versatility. However, object occlusion and defects in scanning equipment frequently result in sparse and missing data within point clouds, adversely affecting the final prediction. Recognizing the synergistic potential between the rich semantic information present in images and the geometric data in point clouds for scene representation, we introduce a two-stage fusion framework (TSFF) for 3D object detection. To address the issue of corrupted geometric information in point clouds caused by object occlusion, we augment point features with image features, thereby enhancing the reference factor of the point cloud during the voting bias phase. Furthermore, we implement a constrained fusion module to selectively sample voting points using a 2D bounding box, integrating valuable image features while reducing the impact of background points in sparse scenes. Our methodology was evaluated on the SUNRGB-D dataset, where it achieved a 3.6 mean average percent (mAP) improvement in the mAP@0.25 evaluation criterion over the baseline. In comparison to other great 3D object detection methods, our method had excellent performance in the detection of some objects.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.