PSA-HWT: handwritten font generation based on pyramid squeeze attention

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-08-23 DOI:10.7717/peerj-cs.2261
Hong Zhao, Jinhai Huang, Wengai Li, Zhaobin Chang, Weijie Wang
{"title":"PSA-HWT: handwritten font generation based on pyramid squeeze attention","authors":"Hong Zhao, Jinhai Huang, Wengai Li, Zhaobin Chang, Weijie Wang","doi":"10.7717/peerj-cs.2261","DOIUrl":null,"url":null,"abstract":"The generator, which combines convolutional neural network (CNN) and Transformer as its core modules, serves as the primary model for the handwriting font generation network and demonstrates effective performance. However, there are still problems with insufficient feature extraction in the overall structure of the font, the thickness of strokes, and the curvature of strokes, resulting in subpar detail in the generated fonts. To solve the problems, we propose a method for constructing a handwritten font generation model based on Pyramid Squeeze Attention, called PSA-HWT. The PSA-HWT model is divided into two parts: an encoder and a decoder. In the encoder, a multi-branch structure is used to extract spatial information at different scales from the input feature map, achieving multi-scale feature extraction. This helps better capture the semantic information and global structure of the font, aiding the generation model in understanding fine-grained features such as the shape, thickness, and curvature of the font. In the decoder, it uses a self-attention mechanism to capture dependencies across various positions in the input sequence. This helps to better understand the relationship between the generated strokes or characters and the handwritten font being generated, ensuring the overall coherence of the generated handwritten text. The experimental results on the IAM dataset demonstrate that PSA-HWT achieves a 16.35% decrease in Fréchet inception distance (FID) score and a 13.09% decrease in Geometry Score (GS) compared to the current advanced methods. This indicates that PSA-HWT generates handwritten fonts of higher quality, making it more practically valuable.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"60 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2261","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The generator, which combines convolutional neural network (CNN) and Transformer as its core modules, serves as the primary model for the handwriting font generation network and demonstrates effective performance. However, there are still problems with insufficient feature extraction in the overall structure of the font, the thickness of strokes, and the curvature of strokes, resulting in subpar detail in the generated fonts. To solve the problems, we propose a method for constructing a handwritten font generation model based on Pyramid Squeeze Attention, called PSA-HWT. The PSA-HWT model is divided into two parts: an encoder and a decoder. In the encoder, a multi-branch structure is used to extract spatial information at different scales from the input feature map, achieving multi-scale feature extraction. This helps better capture the semantic information and global structure of the font, aiding the generation model in understanding fine-grained features such as the shape, thickness, and curvature of the font. In the decoder, it uses a self-attention mechanism to capture dependencies across various positions in the input sequence. This helps to better understand the relationship between the generated strokes or characters and the handwritten font being generated, ensuring the overall coherence of the generated handwritten text. The experimental results on the IAM dataset demonstrate that PSA-HWT achieves a 16.35% decrease in Fréchet inception distance (FID) score and a 13.09% decrease in Geometry Score (GS) compared to the current advanced methods. This indicates that PSA-HWT generates handwritten fonts of higher quality, making it more practically valuable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSA-HWT:基于金字塔挤压注意力的手写字体生成技术
该生成器以卷积神经网络(CNN)和变换器为核心模块,可作为手写字体生成网络的主要模型,并显示出有效的性能。然而,在字体的整体结构、笔画粗细和笔画弧度等方面仍存在特征提取不足的问题,导致生成的字体细节不够丰富。为了解决这些问题,我们提出了一种基于金字塔挤压注意力的手写字体生成模型的构建方法,称为 PSA-HWT。PSA-HWT 模型分为两部分:编码器和解码器。在编码器中,使用多分支结构从输入特征图中提取不同尺度的空间信息,实现多尺度特征提取。这有助于更好地捕捉字体的语义信息和全局结构,帮助生成模型理解字体的形状、粗细和弧度等细粒度特征。在解码器中,它使用自我关注机制来捕捉输入序列中不同位置的依赖关系。这有助于更好地理解生成的笔画或字符与正在生成的手写字体之间的关系,确保生成的手写文本的整体一致性。在 IAM 数据集上的实验结果表明,与目前的先进方法相比,PSA-HWT 的弗雷谢特起始距离 (FID) 分数降低了 16.35%,几何分数 (GS) 降低了 13.09%。这表明 PSA-HWT 生成的手写字体质量更高,更有实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
A model integrating attention mechanism and generative adversarial network for image style transfer. Detecting rumors in social media using emotion based deep learning approach. Harnessing AI and analytics to enhance cybersecurity and privacy for collective intelligence systems. Improving synthetic media generation and detection using generative adversarial networks. Intelligent accounting optimization method based on meta-heuristic algorithm and CNN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1