Filipe Lemos, Filipe F. Correia, Ademar Aguiar, Paulo G. G. Queiroz
{"title":"Live software documentation of design pattern instances","authors":"Filipe Lemos, Filipe F. Correia, Ademar Aguiar, Paulo G. G. Queiroz","doi":"10.7717/peerj-cs.2090","DOIUrl":null,"url":null,"abstract":"Background\nApproaches to documenting the software patterns of a system can support intentionally and manually documenting them or automatically extracting them from the source code. Some of the approaches that we review do not maintain proximity between code and documentation. Others do not update the documentation after the code is changed. All of them present a low level of liveness. Approach\nThis work proposes an approach to improve the understandability of a software system by documenting the design patterns it uses. We regard the creation and the documentation of software as part of the same process and attempt to streamline the two activities. We achieve this by increasing the feedback about the pattern instances present in the code, during development—i.e., by increasing liveness. Moreover, our approach maintains proximity between code and documentation and allows us to visualize the pattern instances under the same environment. We developed a prototype—DesignPatternDoc—for IntelliJ IDEA that continuously identifies pattern instances in the code, suggests them to the developer, generates the respective pattern-instance documentation, and enables live editing and visualization of that documentation. Results\nTo evaluate this approach, we conducted a controlled experiment with 21 novice developers. We asked participants to complete three tasks that involved understanding and evolving small software systems—up to six classes and 100 lines of code—and recorded the duration and the number of context switches. The results show that our approach helps developers spend less time understanding and documenting a software system when compared to using tools with a lower degree of liveness. Additionally, embedding documentation in the IDE and maintaining it close to the source code reduces context switching significantly.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"13 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2090","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Approaches to documenting the software patterns of a system can support intentionally and manually documenting them or automatically extracting them from the source code. Some of the approaches that we review do not maintain proximity between code and documentation. Others do not update the documentation after the code is changed. All of them present a low level of liveness. Approach
This work proposes an approach to improve the understandability of a software system by documenting the design patterns it uses. We regard the creation and the documentation of software as part of the same process and attempt to streamline the two activities. We achieve this by increasing the feedback about the pattern instances present in the code, during development—i.e., by increasing liveness. Moreover, our approach maintains proximity between code and documentation and allows us to visualize the pattern instances under the same environment. We developed a prototype—DesignPatternDoc—for IntelliJ IDEA that continuously identifies pattern instances in the code, suggests them to the developer, generates the respective pattern-instance documentation, and enables live editing and visualization of that documentation. Results
To evaluate this approach, we conducted a controlled experiment with 21 novice developers. We asked participants to complete three tasks that involved understanding and evolving small software systems—up to six classes and 100 lines of code—and recorded the duration and the number of context switches. The results show that our approach helps developers spend less time understanding and documenting a software system when compared to using tools with a lower degree of liveness. Additionally, embedding documentation in the IDE and maintaining it close to the source code reduces context switching significantly.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.