Auto-proctoring using computer vision in MOOCs system

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Multimedia Tools and Applications Pub Date : 2024-09-09 DOI:10.1007/s11042-024-20099-w
Tuan Linh Dang, Nguyen Minh Nhat Hoang, The Vu Nguyen, Hoang Vu Nguyen, Quang Minh Dang, Quang Hai Tran, Huy Hoang Pham
{"title":"Auto-proctoring using computer vision in MOOCs system","authors":"Tuan Linh Dang, Nguyen Minh Nhat Hoang, The Vu Nguyen, Hoang Vu Nguyen, Quang Minh Dang, Quang Hai Tran, Huy Hoang Pham","doi":"10.1007/s11042-024-20099-w","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 outbreak has caused a significant shift towards virtual education, where Massive Open Online Courses (MOOCs), such as EdX and Coursera, have become prevalent distance learning mediums. Online exams are also gaining popularity, but they pose a risk of cheating without proper supervision. Online proctoring can significantly improve the quality of education, and with the addition of extended modules on MOOCs, the incorporation of artificial intelligence in the proctoring process has become more accessible. Despite the advancements in machine learning-based cheating detection in third-party proctoring tools, there is still a need for optimization and adaptability of such systems for massive simultaneous user requirements of MOOCs. Therefore, we have developed an examination monitoring system based on advanced artificial intelligence technology. This system is highly scalable and can be easily integrated with our existing MOOCs platform, daotao.ai. Experimental results demonstrated that our proposed system achieved a 95.66% accuracy rate in detecting cheating behaviors, processed video inputs with an average response time of 0.517 seconds, and successfully handled concurrent user demands, thereby validating its effectiveness and reliability for large-scale online examination monitoring.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"6 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20099-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 outbreak has caused a significant shift towards virtual education, where Massive Open Online Courses (MOOCs), such as EdX and Coursera, have become prevalent distance learning mediums. Online exams are also gaining popularity, but they pose a risk of cheating without proper supervision. Online proctoring can significantly improve the quality of education, and with the addition of extended modules on MOOCs, the incorporation of artificial intelligence in the proctoring process has become more accessible. Despite the advancements in machine learning-based cheating detection in third-party proctoring tools, there is still a need for optimization and adaptability of such systems for massive simultaneous user requirements of MOOCs. Therefore, we have developed an examination monitoring system based on advanced artificial intelligence technology. This system is highly scalable and can be easily integrated with our existing MOOCs platform, daotao.ai. Experimental results demonstrated that our proposed system achieved a 95.66% accuracy rate in detecting cheating behaviors, processed video inputs with an average response time of 0.517 seconds, and successfully handled concurrent user demands, thereby validating its effectiveness and reliability for large-scale online examination monitoring.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 MOOC 系统中使用计算机视觉进行自动监考
COVID-19 的爆发导致了向虚拟教育的重大转变,EdX 和 Coursera 等大规模开放式在线课程 (MOOC) 已成为流行的远程学习媒介。在线考试也越来越受欢迎,但在没有适当监督的情况下,会带来作弊风险。在线监考可以大大提高教育质量,随着 MOOC 扩展模块的增加,人工智能在监考过程中的应用也变得更加容易。尽管第三方监考工具在基于机器学习的作弊检测方面取得了进步,但仍需要对此类系统进行优化和调整,以适应MOOCs大量用户同时使用的要求。因此,我们开发了基于先进人工智能技术的考试监控系统。该系统具有很强的可扩展性,可以很容易地与我们现有的MOOCs平台daotao.ai集成。实验结果表明,我们提出的系统在检测作弊行为方面达到了 95.66% 的准确率,处理视频输入的平均响应时间为 0.517 秒,并成功处理了并发用户需求,从而验证了其在大规模在线考试监控方面的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multimedia Tools and Applications
Multimedia Tools and Applications 工程技术-工程:电子与电气
CiteScore
7.20
自引率
16.70%
发文量
2439
审稿时长
9.2 months
期刊介绍: Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed. Specific areas of interest include: - Multimedia Tools: - Multimedia Applications: - Prototype multimedia systems and platforms
期刊最新文献
MeVs-deep CNN: optimized deep learning model for efficient lung cancer classification Text-driven clothed human image synthesis with 3D human model estimation for assistance in shopping Hybrid golden jackal fusion based recommendation system for spatio-temporal transportation's optimal traffic congestion and road condition classification Deep-Dixon: Deep-Learning frameworks for fusion of MR T1 images for fat and water extraction Unified pre-training with pseudo infrared images for visible-infrared person re-identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1