{"title":"Novel Trip Agglomeration Methods for Efficient Extraction of Urban Mobility Patterns","authors":"Praveen Kumar, Partha Chakroborty, Hemant Gehlot","doi":"10.1007/s11067-024-09641-3","DOIUrl":null,"url":null,"abstract":"<p>Mobility patterns in an urban area can be defined as the trip making behavior of an urban population. Traditionally, the origin-destination matrix representation of travel demand, where trip ends are agglomerated toward zone centroids that are decided a priori, has historically been used to identify trip making behavior. In this paper, different agglomeration methods are explored to extract the trip making behavior and their performances are analyzed. First, a variant of the zone-based agglomeration method is proposed, in which zones are optimally located rather than having their locations determined beforehand. Then a trip-based agglomeration method is proposed, where each trip is represented as an ordered pair of origin and destination in the form of a line segment and agglomeration of these line segments is performed. The proposed line-based agglomeration method serves a two-fold purpose, (a) the proposed trip-based agglomeration method helps in identifying the corridors carrying the majority of the flow in a single step, as opposed to trip-end based agglomeration methods where several post-processing steps may be required to identify the corridors, and (b) this method performs better than the existing trip-end based agglomeration methods in terms of the number of corridors that are required to cover the given trips. Efficient algorithms are also developed to solve the proposed trip-based agglomeration method, their performance on real-world trip datasets is tested and finally, the properties of the proposed algorithms are explored.</p>","PeriodicalId":501141,"journal":{"name":"Networks and Spatial Economics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Spatial Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11067-024-09641-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mobility patterns in an urban area can be defined as the trip making behavior of an urban population. Traditionally, the origin-destination matrix representation of travel demand, where trip ends are agglomerated toward zone centroids that are decided a priori, has historically been used to identify trip making behavior. In this paper, different agglomeration methods are explored to extract the trip making behavior and their performances are analyzed. First, a variant of the zone-based agglomeration method is proposed, in which zones are optimally located rather than having their locations determined beforehand. Then a trip-based agglomeration method is proposed, where each trip is represented as an ordered pair of origin and destination in the form of a line segment and agglomeration of these line segments is performed. The proposed line-based agglomeration method serves a two-fold purpose, (a) the proposed trip-based agglomeration method helps in identifying the corridors carrying the majority of the flow in a single step, as opposed to trip-end based agglomeration methods where several post-processing steps may be required to identify the corridors, and (b) this method performs better than the existing trip-end based agglomeration methods in terms of the number of corridors that are required to cover the given trips. Efficient algorithms are also developed to solve the proposed trip-based agglomeration method, their performance on real-world trip datasets is tested and finally, the properties of the proposed algorithms are explored.