Comprehensive review and comparative analysis of transformer models in sentiment analysis

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge and Information Systems Pub Date : 2024-09-06 DOI:10.1007/s10115-024-02214-3
Hadis Bashiri, Hassan Naderi
{"title":"Comprehensive review and comparative analysis of transformer models in sentiment analysis","authors":"Hadis Bashiri, Hassan Naderi","doi":"10.1007/s10115-024-02214-3","DOIUrl":null,"url":null,"abstract":"<p>Sentiment analysis has become an important task in natural language processing because it is used in many different areas. This paper gives a detailed review of sentiment analysis, including its definition, challenges, and uses. Different approaches to sentiment analysis are discussed, focusing on how they have changed and their limitations. Special attention is given to recent improvements with transformer models and transfer learning. Detailed reviews of well-known transformer models like BERT, RoBERTa, XLNet, ELECTRA, DistilBERT, ALBERT, T5, and GPT are provided, looking at their structures and roles in sentiment analysis. In the experimental section, the performance of these eight transformer models is compared across 22 different datasets. The results show that the T5 model consistently performs the best on multiple datasets, demonstrating its flexibility and ability to generalize. XLNet performs very well in understanding irony and sentiments related to products, while ELECTRA and RoBERTa perform best on certain datasets, showing their strengths in specific areas. BERT and DistilBERT often perform the lowest, indicating that they may struggle with complex sentiment tasks despite being computationally efficient.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"11 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02214-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis has become an important task in natural language processing because it is used in many different areas. This paper gives a detailed review of sentiment analysis, including its definition, challenges, and uses. Different approaches to sentiment analysis are discussed, focusing on how they have changed and their limitations. Special attention is given to recent improvements with transformer models and transfer learning. Detailed reviews of well-known transformer models like BERT, RoBERTa, XLNet, ELECTRA, DistilBERT, ALBERT, T5, and GPT are provided, looking at their structures and roles in sentiment analysis. In the experimental section, the performance of these eight transformer models is compared across 22 different datasets. The results show that the T5 model consistently performs the best on multiple datasets, demonstrating its flexibility and ability to generalize. XLNet performs very well in understanding irony and sentiments related to products, while ELECTRA and RoBERTa perform best on certain datasets, showing their strengths in specific areas. BERT and DistilBERT often perform the lowest, indicating that they may struggle with complex sentiment tasks despite being computationally efficient.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情感分析中变压器模型的全面回顾和比较分析
情感分析已成为自然语言处理中的一项重要任务,因为它被用于许多不同的领域。本文详细回顾了情感分析,包括其定义、挑战和用途。本文讨论了情感分析的不同方法,重点是这些方法的变化及其局限性。本文特别关注了转化模型和迁移学习的最新改进。文章对 BERT、RoBERTa、XLNet、ELECTRA、DistilBERT、ALBERT、T5 和 GPT 等著名的转换器模型进行了详细评述,探讨了它们在情感分析中的结构和作用。实验部分比较了这八个转换器模型在 22 个不同数据集中的表现。结果表明,T5 模型在多个数据集上的表现一直是最好的,这证明了它的灵活性和泛化能力。XLNet 在理解与产品相关的讽刺和情感方面表现出色,而 ELECTRA 和 RoBERTa 在某些数据集上表现最佳,显示了它们在特定领域的优势。BERT 和 DistilBERT 的表现往往最低,这表明尽管它们的计算效率很高,但在处理复杂的情感任务时可能会很吃力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
期刊最新文献
Dynamic evolution of causal relationships among cryptocurrencies: an analysis via Bayesian networks Deep multi-semantic fuzzy K-means with adaptive weight adjustment Class incremental named entity recognition without forgetting Spectral clustering with scale fairness constraints Supervised kernel-based multi-modal Bhattacharya distance learning for imbalanced data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1