An analytical solution for shear bearing capacity of circumferential joints of precast concrete segmental tunnel linings considering dowel action

IF 3 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Structural Concrete Pub Date : 2024-08-15 DOI:10.1002/suco.202400250
Rizwan Amjad, Yumeng Zhang, Xian Liu
{"title":"An analytical solution for shear bearing capacity of circumferential joints of precast concrete segmental tunnel linings considering dowel action","authors":"Rizwan Amjad, Yumeng Zhang, Xian Liu","doi":"10.1002/suco.202400250","DOIUrl":null,"url":null,"abstract":"The capacity of the circumferential joint of the precast concrete segmental tunnel lining (PCTL) structure in terms of shear performance principally includes the dowel action by connector/bolt as well as friction force, and it is a vital parameter to assess the mechanical response of the circumferential joint. Further, as there was no analytical model available for precise estimation of a circumferential joint in terms of the shear‐bearing capacity considering the dowel action of the bolt in the presence of axial/normal force, therefore in this investigation, an analytical model has been proposed to estimate the shear‐bearing capacity of the circumferential joint. Furthermore, the analytical model's precision and accuracy were validated via large‐scale experimental investigation on a circumferential joint of PCTL. Upon comparing analytical model outcomes with experimental results, absolute error varied between +5% and −9%, with an average value of the coefficient of friction at the yield point of the bolt. Moreover, the formation of hinges on the side of the bolt within the segment was considered a failure of the circumferential joint. Additionally, the parametric investigation revealed that with just a 1% change in axial force, the diameter, pre‐tightening, and yield strength of the bolt and concrete strength improved by 2.85%, 1%, 0.27%, 0.26% and 0.17% shear‐bearing capacity of the circumferential joint respectively. Axial force variation greatly influences the shear‐bearing capacity of circumferential joint followed by diameter, pre‐tightening, yield strength of the bolt, and concrete strength. Conclusively, with analysis of axial force distribution around the ring for the tunnel, the proposed model has been applied to a full ring to estimate shear bearing capacity.","PeriodicalId":21988,"journal":{"name":"Structural Concrete","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/suco.202400250","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The capacity of the circumferential joint of the precast concrete segmental tunnel lining (PCTL) structure in terms of shear performance principally includes the dowel action by connector/bolt as well as friction force, and it is a vital parameter to assess the mechanical response of the circumferential joint. Further, as there was no analytical model available for precise estimation of a circumferential joint in terms of the shear‐bearing capacity considering the dowel action of the bolt in the presence of axial/normal force, therefore in this investigation, an analytical model has been proposed to estimate the shear‐bearing capacity of the circumferential joint. Furthermore, the analytical model's precision and accuracy were validated via large‐scale experimental investigation on a circumferential joint of PCTL. Upon comparing analytical model outcomes with experimental results, absolute error varied between +5% and −9%, with an average value of the coefficient of friction at the yield point of the bolt. Moreover, the formation of hinges on the side of the bolt within the segment was considered a failure of the circumferential joint. Additionally, the parametric investigation revealed that with just a 1% change in axial force, the diameter, pre‐tightening, and yield strength of the bolt and concrete strength improved by 2.85%, 1%, 0.27%, 0.26% and 0.17% shear‐bearing capacity of the circumferential joint respectively. Axial force variation greatly influences the shear‐bearing capacity of circumferential joint followed by diameter, pre‐tightening, yield strength of the bolt, and concrete strength. Conclusively, with analysis of axial force distribution around the ring for the tunnel, the proposed model has been applied to a full ring to estimate shear bearing capacity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑镙栓作用的预制混凝土节段式隧道衬砌圆周接缝抗剪承载力分析解决方案
预制混凝土节段式隧道衬砌(PCTL)结构圆周连接处的抗剪能力主要包括连接件/螺栓的榫卯作用以及摩擦力,是评估圆周连接处机械响应的重要参数。此外,考虑到螺栓在轴向力/法向力作用下的榫销作用,目前还没有分析模型可用于精确估算圆周连接的剪切承载能力,因此本研究提出了一个分析模型来估算圆周连接的剪切承载能力。此外,通过对 PCTL 周向接头进行大规模实验研究,验证了分析模型的精度和准确性。将分析模型结果与实验结果进行比较后发现,绝对误差在 +5% 到 -9% 之间,平均值为螺栓屈服点处的摩擦系数。此外,段内螺栓一侧铰链的形成被认为是圆周连接的失效。此外,参数调查显示,轴向力仅变化 1%,螺栓直径、预紧力、屈服强度和混凝土强度就分别提高了 2.85%、1%、0.27%、0.26% 和 0.17%,圆周连接的抗剪承载力也分别提高了 1%、0.27%、0.26% 和 0.17%。轴向力变化对圆周连接的剪切承载能力影响很大,其次是直径、预紧力、螺栓屈服强度和混凝土强度。最后,通过对隧道环向轴向力分布的分析,提出的模型已应用于全环的剪切承载力估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Concrete
Structural Concrete CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
5.60
自引率
15.60%
发文量
284
审稿时长
3 months
期刊介绍: Structural Concrete, the official journal of the fib, provides conceptual and procedural guidance in the field of concrete construction, and features peer-reviewed papers, keynote research and industry news covering all aspects of the design, construction, performance in service and demolition of concrete structures. Main topics: design, construction, performance in service, conservation (assessment, maintenance, strengthening) and demolition of concrete structures research about the behaviour of concrete structures development of design methods fib Model Code sustainability of concrete structures.
期刊最新文献
Development of a new analytical model for circular concrete ring segments with dry joints under combined effects Fiber orientation and orientation factors in steel fiber‐reinforced concrete beams with hybrid fibers: A critical review Load‐path analysis of transverse tensile stresses in multiple‐pile caps Mechanical behavior of prestressed UHPC wind turbine tower columns under combined axial compression and bending Experimental investigation on mechanical property and hydration process of sintered sludge cement paste at different water‐binder ratios and curing ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1