Active Learning for Discovering Complex Phase Diagrams with Gaussian Processes

Max Zhu, Jian Yao, Marcus Mynatt, Hubert Pugzlys, Shuyi Li, Sergio Bacallado, Qingyuan Zhao, Chunjing Jia
{"title":"Active Learning for Discovering Complex Phase Diagrams with Gaussian Processes","authors":"Max Zhu, Jian Yao, Marcus Mynatt, Hubert Pugzlys, Shuyi Li, Sergio Bacallado, Qingyuan Zhao, Chunjing Jia","doi":"arxiv-2409.07042","DOIUrl":null,"url":null,"abstract":"We introduce a Bayesian active learning algorithm that efficiently elucidates\nphase diagrams. Using a novel acquisition function that assesses both the\nimpact and likelihood of the next observation, the algorithm iteratively\ndetermines the most informative next experiment to conduct and rapidly discerns\nthe phase diagrams with multiple phases. Comparative studies against existing\nmethods highlight the superior efficiency of our approach. We demonstrate the\nalgorithm's practical application through the successful identification of the\nentire phase diagram of a spin Hamiltonian with antisymmetric interaction on\nHoneycomb lattice, using significantly fewer sample points than traditional\ngrid search methods and a previous method based on support vector machines. Our\nalgorithm identifies the phase diagram consisting of skyrmion, spiral and\npolarized phases with error less than 5% using only 8% of the total possible\nsample points, in both two-dimensional and three-dimensional phase spaces.\nAdditionally, our method proves highly efficient in constructing\nthree-dimensional phase diagrams, significantly reducing computational and\nexperimental costs. Our methodological contributions extend to\nhigher-dimensional phase diagrams with multiple phases, emphasizing the\nalgorithm's effectiveness and versatility in handling complex, multi-phase\nsystems in various dimensions.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a Bayesian active learning algorithm that efficiently elucidates phase diagrams. Using a novel acquisition function that assesses both the impact and likelihood of the next observation, the algorithm iteratively determines the most informative next experiment to conduct and rapidly discerns the phase diagrams with multiple phases. Comparative studies against existing methods highlight the superior efficiency of our approach. We demonstrate the algorithm's practical application through the successful identification of the entire phase diagram of a spin Hamiltonian with antisymmetric interaction on Honeycomb lattice, using significantly fewer sample points than traditional grid search methods and a previous method based on support vector machines. Our algorithm identifies the phase diagram consisting of skyrmion, spiral and polarized phases with error less than 5% using only 8% of the total possible sample points, in both two-dimensional and three-dimensional phase spaces. Additionally, our method proves highly efficient in constructing three-dimensional phase diagrams, significantly reducing computational and experimental costs. Our methodological contributions extend to higher-dimensional phase diagrams with multiple phases, emphasizing the algorithm's effectiveness and versatility in handling complex, multi-phase systems in various dimensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高斯过程主动学习发现复杂相图
我们介绍了一种能有效阐明相图的贝叶斯主动学习算法。该算法使用一种新颖的获取函数来评估下一次观测的影响和可能性,从而迭代地确定下一次要进行的信息量最大的实验,并快速判别多相的相图。与现有方法的对比研究凸显了我们方法的卓越效率。与传统的网格搜索方法和之前基于支持向量机的方法相比,我们使用了明显更少的样本点,在蜂巢晶格上成功识别了具有不对称相互作用的自旋哈密顿的全相图,从而证明了该算法的实际应用价值。在二维和三维相空间中,Oural 算法只用了全部可能样本点的 8%,就识别出了由天空离子相、螺旋相和极化相组成的相图,误差小于 5%。此外,我们的方法还证明在构建三维相图时非常高效,大大降低了计算和实验成本。我们在方法论上的贡献扩展到了具有多相的高维相图,强调了该算法在处理各种维度的复杂多相系统时的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1