Learning local and semi-local density functionals from exact exchange-correlation potentials and energies

Bikash Kanungo, Jeffrey Hatch, Paul M. Zimmerman, Vikram Gavini
{"title":"Learning local and semi-local density functionals from exact exchange-correlation potentials and energies","authors":"Bikash Kanungo, Jeffrey Hatch, Paul M. Zimmerman, Vikram Gavini","doi":"arxiv-2409.06498","DOIUrl":null,"url":null,"abstract":"Finding accurate exchange-correlation (XC) functionals remains the defining\nchallenge in density functional theory (DFT). Despite 40 years of active\ndevelopment, the desired chemical accuracy is still elusive with existing\nfunctionals. We present a data-driven pathway to learn the XC functionals by\nutilizing the exact density, XC energy, and XC potential. While the exact\ndensities are obtained from accurate configuration interaction (CI), the exact\nXC energies and XC potentials are obtained via inverse DFT calculations on the\nCI densities. We demonstrate how simple neural network (NN) based local density\napproximation (LDA) and generalized gradient approximation (GGA), trained on\njust five atoms and two molecules, provide remarkable improvement in total\nenergies, densities, atomization energies, and barrier heights for hundreds of\nmolecules outside the training set. Particularly, the NN-based GGA functional\nattains similar accuracy as the higher rung SCAN meta-GGA, highlighting the\npromise of using the XC potential in modeling XC functionals. We expect this\napproach to pave the way for systematic learning of increasingly accurate and\nsophisticated XC functionals.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finding accurate exchange-correlation (XC) functionals remains the defining challenge in density functional theory (DFT). Despite 40 years of active development, the desired chemical accuracy is still elusive with existing functionals. We present a data-driven pathway to learn the XC functionals by utilizing the exact density, XC energy, and XC potential. While the exact densities are obtained from accurate configuration interaction (CI), the exact XC energies and XC potentials are obtained via inverse DFT calculations on the CI densities. We demonstrate how simple neural network (NN) based local density approximation (LDA) and generalized gradient approximation (GGA), trained on just five atoms and two molecules, provide remarkable improvement in total energies, densities, atomization energies, and barrier heights for hundreds of molecules outside the training set. Particularly, the NN-based GGA functional attains similar accuracy as the higher rung SCAN meta-GGA, highlighting the promise of using the XC potential in modeling XC functionals. We expect this approach to pave the way for systematic learning of increasingly accurate and sophisticated XC functionals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从精确交换相关电势和能量中学习局部和半局部密度函数
寻找精确的交换相关(XC)函数仍然是密度泛函理论(DFT)的决定性挑战。尽管经过 40 年的积极发展,现有函数仍然无法达到理想的化学精度。我们提出了一种数据驱动路径,通过利用精确密度、XC 能量和 XC 势来学习 XC 函数。精确密度是通过精确的构型相互作用(CI)获得的,而精确的 XC 能量和 XC 势则是通过对 CI 密度进行反 DFT 计算获得的。我们展示了基于简单神经网络(NN)的局部密度逼近(LDA)和广义梯度逼近(GGA)是如何通过对五个原子和两个分子的训练,显著改善了训练集之外数百个分子的总能、密度、原子化能和势垒高度。特别是,基于 NN 的 GGA 函数获得了与更高阶 SCAN 元 GGA 相似的精确度,突出了在 XC 函数建模中使用 XC 势的前景。我们期待这种方法能为系统学习越来越精确和复杂的 XC 函数铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1