Constructing multicomponent cluster expansions with machine-learning and chemical embedding

Yann L. Müller, Anirudh Raju Natarajan
{"title":"Constructing multicomponent cluster expansions with machine-learning and chemical embedding","authors":"Yann L. Müller, Anirudh Raju Natarajan","doi":"arxiv-2409.06071","DOIUrl":null,"url":null,"abstract":"Cluster expansions are commonly employed as surrogate models to link the\nelectronic structure of an alloy to its finite-temperature properties. Using\ncluster expansions to model materials with several alloying elements is\nchallenging due to a rapid increase in the number of fitting parameters and\ntraining set size. We introduce the embedded cluster expansion (eCE) formalism\nthat enables the parameterization of accurate on-lattice surrogate models for\nalloys containing several chemical species. The eCE model simultaneously learns\na low dimensional embedding of site basis functions along with the weights of\nan energy model. A prototypical senary alloy comprised of elements in groups 5\nand 6 of the periodic table is used to demonstrate that eCE models can\naccurately reproduce ordering energetics of complex alloys without a\nsignificant increase in model complexity. Further, eCE models can leverage\nsimilarities between chemical elements to efficiently extrapolate into\ncompositional spaces that are not explicitly included in the training dataset.\nThe eCE formalism presented in this study unlocks the possibility of employing\ncluster expansion models to study multicomponent alloys containing several\nalloying elements.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cluster expansions are commonly employed as surrogate models to link the electronic structure of an alloy to its finite-temperature properties. Using cluster expansions to model materials with several alloying elements is challenging due to a rapid increase in the number of fitting parameters and training set size. We introduce the embedded cluster expansion (eCE) formalism that enables the parameterization of accurate on-lattice surrogate models for alloys containing several chemical species. The eCE model simultaneously learns a low dimensional embedding of site basis functions along with the weights of an energy model. A prototypical senary alloy comprised of elements in groups 5 and 6 of the periodic table is used to demonstrate that eCE models can accurately reproduce ordering energetics of complex alloys without a significant increase in model complexity. Further, eCE models can leverage similarities between chemical elements to efficiently extrapolate into compositional spaces that are not explicitly included in the training dataset. The eCE formalism presented in this study unlocks the possibility of employing cluster expansion models to study multicomponent alloys containing several alloying elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习和化学嵌入构建多组分簇扩展
簇膨胀通常被用作代用模型,将合金的电子结构与其有限温度特性联系起来。由于拟合参数数量和训练集大小的快速增加,使用簇展开对含有多种合金元素的材料建模具有挑战性。我们介绍了嵌入式簇扩展(eCE)形式,它可以为含有多种化学元素的合金建立精确的晶格上替代模型。eCE 模型可以同时学习低维嵌入的位点基函数和能量模型的权重。一种由元素周期表第 5 和第 6 组元素组成的原型全价合金被用来证明,eCE 模型可以准确地再现复杂合金的排序能量学,而不会显著增加模型的复杂性。此外,eCE 模型还能利用化学元素之间的相似性,有效地推断出训练数据集中未明确包含的成分空间。本研究提出的 eCE 形式主义为采用簇扩展模型研究包含多种合金元素的多组分合金提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1