Simulating real-time molecular electron dynamics efficiently using the time-dependent density matrix renormalization group

Imam S. Wahyutama, Henrik R. Larsson
{"title":"Simulating real-time molecular electron dynamics efficiently using the time-dependent density matrix renormalization group","authors":"Imam S. Wahyutama, Henrik R. Larsson","doi":"arxiv-2409.05959","DOIUrl":null,"url":null,"abstract":"Compared to ground state electronic structure optimizations, accurate\nsimulations of molecular real-time electron dynamics are usually much more\ndifficult to perform. To simulate electron dynamics, the time-dependent density\nmatrix renormalization group (TDDMRG) has been shown to offer an attractive\ncompromise between accuracy and cost. However, many simulation parameters\nsignificantly affect the quality and efficiency of a TDDMRG simulation. So far,\nit is unclear whether common wisdom from ground state DMRG carries over to the\nTDDMRG, and a guideline on how to choose these parameters is missing. Here, in\norder to establish such a guideline, we investigate the convergence behavior of\nthe main TDDMRG simulation parameters, such as time integrator, the choice of\norbitals, and the choice of MPS representation for complex-valued non-singlet\nstates. In addition, we propose a method to select orbitals that are tailored\nto optimize the dynamics. Lastly, we showcase the TDDMRG by applying it to\ncharge migration ionization dynamics in furfural, where we reveal a rapid\nconversion from an ionized state with a $\\sigma$ character to one with a $\\pi$\ncharacter within less than a femtosecond.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to ground state electronic structure optimizations, accurate simulations of molecular real-time electron dynamics are usually much more difficult to perform. To simulate electron dynamics, the time-dependent density matrix renormalization group (TDDMRG) has been shown to offer an attractive compromise between accuracy and cost. However, many simulation parameters significantly affect the quality and efficiency of a TDDMRG simulation. So far, it is unclear whether common wisdom from ground state DMRG carries over to the TDDMRG, and a guideline on how to choose these parameters is missing. Here, in order to establish such a guideline, we investigate the convergence behavior of the main TDDMRG simulation parameters, such as time integrator, the choice of orbitals, and the choice of MPS representation for complex-valued non-singlet states. In addition, we propose a method to select orbitals that are tailored to optimize the dynamics. Lastly, we showcase the TDDMRG by applying it to charge migration ionization dynamics in furfural, where we reveal a rapid conversion from an ionized state with a $\sigma$ character to one with a $\pi$ character within less than a femtosecond.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用随时间变化的密度矩阵重正化群高效模拟实时分子电子动力学
与基态电子结构优化相比,精确模拟分子实时电子动力学通常要困难得多。在模拟电子动力学时,与时间相关的密度矩阵重正化群(TDDMRG)已被证明在精度和成本之间提供了极具吸引力的折中方案。然而,许多模拟参数会显著影响 TDDMRG 模拟的质量和效率。迄今为止,人们还不清楚地面态 DMRG 的共同智慧是否也适用于 TDDMRG,也缺少如何选择这些参数的指南。在这里,为了建立这样一种指导原则,我们研究了 TDDMRG 模拟主要参数的收敛行为,如时间积分器、轨道的选择以及复值非小星态的 MPS 表示的选择。此外,我们还提出了一种选择轨道的方法,以优化动力学。最后,我们将 TDDMRG 应用于糠醛中的电荷迁移电离动力学,从而展示了在不到飞秒的时间内从具有 $\sigma$ 特征的电离状态到具有 $\pi$ 特征的电离状态的快速转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1