Comprehensive reevaluation of acetaldehyde chemistry and the underlying uncertainties

Xinrui Ren, Hongqing Wu, Ruoyue Tang, Yanqing Cui, Mingrui Wang, Song Cheng
{"title":"Comprehensive reevaluation of acetaldehyde chemistry and the underlying uncertainties","authors":"Xinrui Ren, Hongqing Wu, Ruoyue Tang, Yanqing Cui, Mingrui Wang, Song Cheng","doi":"arxiv-2409.04015","DOIUrl":null,"url":null,"abstract":"Understanding the combustion chemistry of acetaldehyde is crucial to\ndeveloping robust and accurate combustion chemistry models for practical fuels,\nespecially for biofuels. This study aims to reevaluate the important rate and\nthermodynamic parameters for acetaldehyde combustion chemistry. The rate\nparameters of 79 key reactions are reevaluated using more than 100,000 direct\nexperiments and quantum chemistry computations from >900 studies, and the\nthermochemistry ({\\Delta}hf(298K), s0(298K) and cp) of 24 key species are\nreevaluated based on the ATCT database, the NIST Chemistry WebBook, the TMTD\ndatabase, and 35 published chemistry models. The updated parameters are\nincorporated into a recent acetaldehyde chemistry model, which is further\nassessed against available fundamental experiments (123 ignition delay times\nand 385 species concentrations) and existing chemistry models, with clearly\nbetter performance obtained in the high-temperature regime. Sensitivity and\nflux analyses further highlight the insufficiencies of previous models in\nrepresenting the key pathways, particularly the branching ratios of\nacetaldehyde- and formaldehyde-consuming pathways. Temperature-dependent and\ntemperature-independent uncertainties are statistically evaluated for kinetic\nand thermochemical parameters, respectively, where the large differences\nbetween the updated and the original model parameters reveal the necessity of\nreassessment of kinetic and thermochemical parameters completely based on\ndirect experiments and theoretical calculations for rate and thermodynamic\nparameters.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the combustion chemistry of acetaldehyde is crucial to developing robust and accurate combustion chemistry models for practical fuels, especially for biofuels. This study aims to reevaluate the important rate and thermodynamic parameters for acetaldehyde combustion chemistry. The rate parameters of 79 key reactions are reevaluated using more than 100,000 direct experiments and quantum chemistry computations from >900 studies, and the thermochemistry ({\Delta}hf(298K), s0(298K) and cp) of 24 key species are reevaluated based on the ATCT database, the NIST Chemistry WebBook, the TMTD database, and 35 published chemistry models. The updated parameters are incorporated into a recent acetaldehyde chemistry model, which is further assessed against available fundamental experiments (123 ignition delay times and 385 species concentrations) and existing chemistry models, with clearly better performance obtained in the high-temperature regime. Sensitivity and flux analyses further highlight the insufficiencies of previous models in representing the key pathways, particularly the branching ratios of acetaldehyde- and formaldehyde-consuming pathways. Temperature-dependent and temperature-independent uncertainties are statistically evaluated for kinetic and thermochemical parameters, respectively, where the large differences between the updated and the original model parameters reveal the necessity of reassessment of kinetic and thermochemical parameters completely based on direct experiments and theoretical calculations for rate and thermodynamic parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全面重新评估乙醛化学性质及其潜在的不确定性
了解乙醛的燃烧化学性质对于为实用燃料(尤其是生物燃料)开发稳健而准确的燃烧化学模型至关重要。本研究旨在重新评估乙醛燃烧化学的重要速率和热力学参数。根据 ATCT 数据库、NIST 化学网络书、TMTD 数据库和 35 个已出版的化学模型,对 79 个关键反应的速率参数和 24 个关键物种的热化学参数({\Delta}hf(298K)、s0(298K) 和 cp)进行了重新评估。更新后的参数被纳入最新的乙醛化学模型,并根据现有的基本实验(123 个点火延迟时间和 385 个物种浓度)和现有的化学模型对该模型进行了进一步评估,结果表明该模型在高温条件下的性能更佳。灵敏度和流量分析进一步凸显了以往模型在反映关键途径方面的不足,特别是乙醛和甲醛消耗途径的分支比率。对动力学参数和热化学参数分别进行了与温度相关和与温度无关的不确定性统计评估,结果表明,更新后的模型参数与原始模型参数之间的巨大差异表明,有必要完全根据速率和热力学参数的直接实验和理论计算对动力学参数和热化学参数进行重新评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1