Configurational entropy and stability conditions of fermion and boson stars

P. S. Koliogiannis, M. Vikiaris, C. Panos, V. Petousis, M. Veselsky, Ch. C. Moustakidis
{"title":"Configurational entropy and stability conditions of fermion and boson stars","authors":"P. S. Koliogiannis, M. Vikiaris, C. Panos, V. Petousis, M. Veselsky, Ch. C. Moustakidis","doi":"arxiv-2409.02803","DOIUrl":null,"url":null,"abstract":"In a remarkable study by M. Gleiser and N. Jiang (Phys. Rev. D {\\bf 92},\n044046, 2015), the authors demonstrated that the stability regions of neutron\nstars, within the framework of the simple Fermi gas model, and self-gravitating\nconfigurations of complex scalar field (boson stars) with various self\ncouplings, obtained through traditional perturbation methods, correlates with\ncritical points of the configurational entropy with an accuracy of a few\npercent. Recently, P. Koliogiannis \\textit{et al.} (Phys. Rev. D {\\bf 107},\n044069 2023) found that while the minimization of the configurational entropy\ngenerally anticipates qualitatively the stability point for neutron stars and\nquark stars, this approach lacks universal validity. In this work, we aim to\nfurther elucidate this issue by seeking to reconcile these seemingly\ncontradictory findings. Specifically, we calculate the configurational entropy\nof bosonic and fermionic systems, described by interacting Fermi and Boson\ngases, respectively, that form compact objects stabilized by gravity. We\ninvestigate whether the minimization of configurational entropy coincides with\nthe stability point of the corresponding compact objects. Our results indicate\na strong correlation between the stability points predicted by configurational\nentropy and those obtained through traditional methods, with the accuracy of\nthis correlation showing a slight dependence on the interaction strength.\nConsequently, the stability of compact objects, composed of components obeying\nFermi or Boson statistics, can alternatively be assessed using the concept of\nconfigurational entropy.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a remarkable study by M. Gleiser and N. Jiang (Phys. Rev. D {\bf 92}, 044046, 2015), the authors demonstrated that the stability regions of neutron stars, within the framework of the simple Fermi gas model, and self-gravitating configurations of complex scalar field (boson stars) with various self couplings, obtained through traditional perturbation methods, correlates with critical points of the configurational entropy with an accuracy of a few percent. Recently, P. Koliogiannis \textit{et al.} (Phys. Rev. D {\bf 107}, 044069 2023) found that while the minimization of the configurational entropy generally anticipates qualitatively the stability point for neutron stars and quark stars, this approach lacks universal validity. In this work, we aim to further elucidate this issue by seeking to reconcile these seemingly contradictory findings. Specifically, we calculate the configurational entropy of bosonic and fermionic systems, described by interacting Fermi and Boson gases, respectively, that form compact objects stabilized by gravity. We investigate whether the minimization of configurational entropy coincides with the stability point of the corresponding compact objects. Our results indicate a strong correlation between the stability points predicted by configurational entropy and those obtained through traditional methods, with the accuracy of this correlation showing a slight dependence on the interaction strength. Consequently, the stability of compact objects, composed of components obeying Fermi or Boson statistics, can alternatively be assessed using the concept of configurational entropy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
费米子和玻色子星的构型熵和稳定条件
在M. Gleiser和N. Jiang(Phys. Rev. D {\bf 92},044046,2015)的一项引人注目的研究中,作者证明了在简单费米气体模型的框架内,通过传统的扰动方法得到的中子星的稳定区域,以及具有各种自耦合的复杂标量场(玻色子星)的自引力构型,与构型熵的临界点的相关性精确到了百分之几。最近,P. Koliogiannis (P. Koliogiannis et al.}(Phys. Rev. D {\bf 107},044069 2023)发现,虽然构型熵的最小化一般可以定性地预测中子星和夸克星的稳定点,但这种方法缺乏普遍有效性。在这项研究中,我们试图通过调和这些看似矛盾的发现来进一步阐明这一问题。具体来说,我们计算了玻色系统和费米系统的构型熵,这两个系统分别由相互作用的费米气和玻色气描述,它们形成了由引力稳定的紧凑物体。我们研究了构型熵的最小化是否与相应紧凑物体的稳定点相吻合。我们的研究结果表明,由构型熵预测的稳定点与通过传统方法获得的稳定点之间存在很强的相关性,这种相关性的准确性略微依赖于相互作用的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1