Nevanlinna Analytic Continuation for Migdal-Eliashberg Theory

D. M. Khodachenko, R. Lucrezi, P. N. Ferreira, M. Aichhorn, C. Heil
{"title":"Nevanlinna Analytic Continuation for Migdal-Eliashberg Theory","authors":"D. M. Khodachenko, R. Lucrezi, P. N. Ferreira, M. Aichhorn, C. Heil","doi":"arxiv-2409.02737","DOIUrl":null,"url":null,"abstract":"In this work, we present a method to reconstruct real-frequency properties\nfrom analytically continued causal Green's functions within the framework of\nMigdal-Eliashberg (ME) theory for superconductivity. ME theory involves solving\na set of coupled equations self-consistently in imaginary frequency space, but\nto obtain experimentally measurable properties like the spectral function and\nquasiparticle density of states, it is necessary to perform an analytic\ncontinuation to real frequency space. Traditionally, the ME Green's function is\ndecomposed into three fundamental complex functions, which are analytically\ncontinued independently. However, these functions do not possess the causal\nproperties of Green's functions, complicating or even preventing the\napplication of standard methods such as Maximum Entropy. Our approach overcomes\nthese challenges, enabling the use of various analytic continuation techniques\nthat were previously impractical. We demonstrate the effectiveness of this\nmethod by combining it with Nevanlinna analytic continuation to achieve\naccurate real-frequency results for ME theory, which are directly comparable to\nexperimental data, with applications highlighted for the superconductors\nMgB$_2$ and LaBeH$_8$.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a method to reconstruct real-frequency properties from analytically continued causal Green's functions within the framework of Migdal-Eliashberg (ME) theory for superconductivity. ME theory involves solving a set of coupled equations self-consistently in imaginary frequency space, but to obtain experimentally measurable properties like the spectral function and quasiparticle density of states, it is necessary to perform an analytic continuation to real frequency space. Traditionally, the ME Green's function is decomposed into three fundamental complex functions, which are analytically continued independently. However, these functions do not possess the causal properties of Green's functions, complicating or even preventing the application of standard methods such as Maximum Entropy. Our approach overcomes these challenges, enabling the use of various analytic continuation techniques that were previously impractical. We demonstrate the effectiveness of this method by combining it with Nevanlinna analytic continuation to achieve accurate real-frequency results for ME theory, which are directly comparable to experimental data, with applications highlighted for the superconductors MgB$_2$ and LaBeH$_8$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
米格达尔-埃利亚什伯格理论的内万林纳分析连续性
在这项工作中,我们提出了一种在米格达尔-埃利亚什伯格(Migdal-Eliashberg,ME)超导理论框架内,从解析续因果格林函数重建实频特性的方法。ME 理论涉及在虚频空间自洽地求解一组耦合方程,但要获得可实验测量的特性,如频谱函数和类粒子状态密度,就必须对实频空间进行解析续演。传统上,ME 格林函数被分解为三个基本复变函数,并对其进行独立的解析延续。然而,这些函数并不具备格林函数的因果特性,这使得最大熵等标准方法的应用变得复杂,甚至无法应用。我们的方法克服了这些难题,使以前不切实际的各种分析延续技术得以应用。我们证明了这种方法的有效性,将它与 Nevanlinna 分析延续相结合,为 ME 理论获得了精确的实频结果,这些结果可直接与实验数据进行比较,并重点介绍了在超导体 MgB$_2$ 和 LaBeH$_8$ 中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1