Physics-integrated Neural Network for Quantum Transport Prediction of Field-effect Transistor

Xiuying Zhang, Linqiang Xu, Jing Lu, Zhaofu Zhang, Lei Shen
{"title":"Physics-integrated Neural Network for Quantum Transport Prediction of Field-effect Transistor","authors":"Xiuying Zhang, Linqiang Xu, Jing Lu, Zhaofu Zhang, Lei Shen","doi":"arxiv-2408.17023","DOIUrl":null,"url":null,"abstract":"Quantum-mechanics-based transport simulation is of importance for the design\nof ultra-short channel field-effect transistors (FETs) with its capability of\nunderstanding the physical mechanism, while facing the primary challenge of the\nhigh computational intensity. Traditional machine learning is expected to\naccelerate the optimization of FET design, yet its application in this field is\nlimited by the lack of both high-fidelity datasets and the integration of\nphysical knowledge. Here, we introduced a physics-integrated neural network\nframework to predict the transport curves of sub-5-nm gate-all-around (GAA)\nFETs using an in-house developed high-fidelity database. The transport curves\nin the database are collected from literature and our first-principles\ncalculations. Beyond silicon, we included indium arsenide, indium phosphide,\nand selenium nanowires with different structural phases as the FET channel\nmaterials. Then, we built a physical-knowledge-integrated hyper vector neural\nnetwork (PHVNN), in which five new physical features were added into the inputs\nfor prediction transport characteristics, achieving a sufficiently low mean\nabsolute error of 0.39. In particular, ~98% of the current prediction residuals\nare within one order of magnitude. Using PHVNN, we efficiently screened out the\nsymmetric p-type GAA FETs that possess the same figures of merit with the\nn-type ones, which are crucial for the fabrication of homogeneous CMOS\ncircuits. Finally, our automatic differentiation analysis provides\ninterpretable insights into the PHVNN, which highlights the important\ncontributions of our new input parameters and improves the reliability of\nPHVNN. Our approach provides an effective method for rapidly screening\nappropriate GAA FETs with the prospect of accelerating the design process of\nnext-generation electronic devices.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum-mechanics-based transport simulation is of importance for the design of ultra-short channel field-effect transistors (FETs) with its capability of understanding the physical mechanism, while facing the primary challenge of the high computational intensity. Traditional machine learning is expected to accelerate the optimization of FET design, yet its application in this field is limited by the lack of both high-fidelity datasets and the integration of physical knowledge. Here, we introduced a physics-integrated neural network framework to predict the transport curves of sub-5-nm gate-all-around (GAA) FETs using an in-house developed high-fidelity database. The transport curves in the database are collected from literature and our first-principles calculations. Beyond silicon, we included indium arsenide, indium phosphide, and selenium nanowires with different structural phases as the FET channel materials. Then, we built a physical-knowledge-integrated hyper vector neural network (PHVNN), in which five new physical features were added into the inputs for prediction transport characteristics, achieving a sufficiently low mean absolute error of 0.39. In particular, ~98% of the current prediction residuals are within one order of magnitude. Using PHVNN, we efficiently screened out the symmetric p-type GAA FETs that possess the same figures of merit with the n-type ones, which are crucial for the fabrication of homogeneous CMOS circuits. Finally, our automatic differentiation analysis provides interpretable insights into the PHVNN, which highlights the important contributions of our new input parameters and improves the reliability of PHVNN. Our approach provides an effective method for rapidly screening appropriate GAA FETs with the prospect of accelerating the design process of next-generation electronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于场效应晶体管量子输运预测的物理集成神经网络
基于量子力学的输运模拟对于超短沟道场效应晶体管(FET)的设计非常重要,它能够理解物理机制,但同时也面临着计算强度高的主要挑战。传统的机器学习有望加速场效应晶体管的优化设计,但由于缺乏高保真数据集和物理知识的整合,机器学习在这一领域的应用受到了限制。在这里,我们引入了一个物理集成神经网络框架,利用内部开发的高保真数据库预测 5 纳米以下全栅极 (GAA) FET 的传输曲线。数据库中的传输曲线收集自文献和我们的第一原理计算。除了硅之外,我们还将不同结构相的砷化铟、磷化铟和硒纳米线作为场效应晶体管的沟道材料。然后,我们建立了一个物理知识集成超矢量神经网络(PHVNN),在预测传输特性的输入中加入了五个新的物理特征,取得了 0.39 的足够低的平均绝对误差。特别是,目前约 98% 的预测残差都在一个数量级之内。利用 PHVNN,我们有效地筛选出了对称 p 型 GAA 场效应晶体管,这些晶体管具有与当时型晶体管相同的性能指标,这对于制造同质 CMOS 电路至关重要。最后,我们的自动微分分析为 PHVNN 提供了可解释的见解,突出了新输入参数的重要贡献,提高了 PHVNN 的可靠性。我们的方法为快速筛选合适的 GAA FET 提供了一种有效的方法,有望加快下一代电子器件的设计进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1