SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification

Alan John Varghese, Zhen Zhang, George Em Karniadakis
{"title":"SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification","authors":"Alan John Varghese, Zhen Zhang, George Em Karniadakis","doi":"arxiv-2408.16698","DOIUrl":null,"url":null,"abstract":"Existing neural network models to learn Hamiltonian systems, such as\nSympNets, although accurate in low-dimensions, struggle to learn the correct\ndynamics for high-dimensional many-body systems. Herein, we introduce\nSymplectic Graph Neural Networks (SympGNNs) that can effectively handle system\nidentification in high-dimensional Hamiltonian systems, as well as node\nclassification. SympGNNs combines symplectic maps with permutation\nequivariance, a property of graph neural networks. Specifically, we propose two\nvariants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from different\nparameterizations of the kinetic and potential energy. We demonstrate the\ncapabilities of SympGNN on two physical examples: a 40-particle coupled\nHarmonic oscillator, and a 2000-particle molecular dynamics simulation in a\ntwo-dimensional Lennard-Jones potential. Furthermore, we demonstrate the\nperformance of SympGNN in the node classification task, achieving accuracy\ncomparable to the state-of-the-art. We also empirically show that SympGNN can\novercome the oversmoothing and heterophily problems, two key challenges in the\nfield of graph neural networks.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing neural network models to learn Hamiltonian systems, such as SympNets, although accurate in low-dimensions, struggle to learn the correct dynamics for high-dimensional many-body systems. Herein, we introduce Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system identification in high-dimensional Hamiltonian systems, as well as node classification. SympGNNs combines symplectic maps with permutation equivariance, a property of graph neural networks. Specifically, we propose two variants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from different parameterizations of the kinetic and potential energy. We demonstrate the capabilities of SympGNN on two physical examples: a 40-particle coupled Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the performance of SympGNN in the node classification task, achieving accuracy comparable to the state-of-the-art. We also empirically show that SympGNN can overcome the oversmoothing and heterophily problems, two key challenges in the field of graph neural networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SympGNNs:用于识别高维哈密顿系统和节点分类的交映图神经网络
现有的学习哈密顿系统的神经网络模型,如对称图神经网络(SympNets),虽然在低维度上很精确,但在学习高维度多体系统的正确动力学方面却举步维艰。在此,我们引入了折衷图神经网络(SympGNNs),它能有效处理高维哈密顿系统中的系统识别以及节点分类。SympGNNs 将交折射图与图神经网络的特性--置换方差结合起来。具体来说,我们提出了 SympGNNs 的两个变体:i)G-SympGNN 和 ii)LA-SympGNN,它们产生于动能和势能的不同参数化。我们在两个物理例子中演示了 SympGNN 的能力:一个 40 粒子耦合谐振子和一个 2000 粒子分子动力学模拟的二维伦纳德-琼斯势。此外,我们还证明了 SympGNN 在节点分类任务中的性能,其准确性可与最先进的技术相媲美。我们还通过实证证明,SympGNN 可以克服图神经网络领域的两大关键难题--过度平滑和异性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1